Cloning and Strong Expression of a Bacillus subtilis WL-3 Mannanase Gene in B. subtilis

  • Published : 2007.10.30

Abstract

A gene encoding the mannanase of Bacillus subtilis WL-3, which had been isolated from Korean soybean paste, was cloned into Escherichia coli and the nucleotide sequence of a 2.7-kb DNA fragment containing the mannanase gene was subsequently determined. The mannanase gene, designated manA, consisted of 1,080 nucleotides encoding a polypeptide of 360 amino acid residues. The deduced amino acid sequence was highly homologous to those of mannanases belonging to glycosyl hydrolase family 26. The manA gene was strongly expressed in B. subtilis 168 by cloning the gene downstream of a strong B. subtilis promoter of plasmid $pJ27{\Delta}88U$. In flask cultures, the production of mannanase by recombinant B. subtilis 168 reached maximum levels of 300 units/ml and 450 units/ml in LB medium and LB medium containing 0.3% locust bean gum, respectively. Based on the zymogram ofthe mannanase, it was found that the mannanase produced by recombinant B. subtilis could be maintained stably without proteolytic degradation during the culture time.

Keywords

References

  1. Akino, T., C. Kato, and K. Horikoshi. 1989. The cloned $\beta$- mannanase gene from alkalophilic Bacillus sp. AM-001 produces two $\beta$-mannanases in Escherichia coli. Arch. Microbiol. 152: 10-15 https://doi.org/10.1007/BF00447004
  2. Akino, T., N. Nakamura, and K. Horikoshi. 1988. Characterization of three $\beta$-mannanases of an alkalophilic Bacillus sp. Agric. Biol. Chem. 52: 773-779 https://doi.org/10.1271/bbb1961.52.773
  3. Akita, M., N. Takeda, K. Hirasawa, H. Sakai, M. Kawamoto, M. Yamamoto, W. D. Grant, Y. Hatada, S. Ito, and K. Horikoshi. 2004. Crystallization and preliminary X-ray study of alkaline mannanase from an alkaliphilic Bacillus isolate. Acta Crystallogr. D Biol. Crystallogr. 60(Pt 8): 1490-1492 https://doi.org/10.1107/S0907444904014313
  4. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  5. Chen, H.-G., X. Yan, X.-Y. Liu, M.-D. Wang, H.-M. Huang, X.-C. Jia, and J.-A. Wang. 2006. Purification and characterization of novel bifunctional xylanase, XynIII, isolated from Aspergillus niger A-25. J. Microbiol. Biotechnol. 16: 1132-1138
  6. Choi, N. S., K. H. Yoo, J. H. Hahm, K. S. Yoon, K. T. Chang, B. H. Hyun, P. J. Maeng, and S. H. Kim. 2005. Purification and characterization of a new peptidase, bacillopeptidase DJ-2, having fibrinolytic activity, produced by Bacillus sp. DJ-2 from Doen-Jang. J. Microbiol. Biotechnol. 15: 72-79
  7. Ethier, N., G. Talbot, and J. Sygusch. 1998. Gene cloning, DNA sequencing, and expression of thermostable $\beta$-mannanase from Bacillus stearothermophilus. Appl. Environ. Microbiol. 64: 4428-4432
  8. Gibbs, M. D., A. U. Elinder, R. A. Reeves, and P. L. Bergquist. 1996. Sequencing, cloning and expression of a $\beta$-1,4-mannanase gene, manA, from the extremely thermophilic anaerobic bacterium, Caldicellulosiruptor Rt8B.4. FEMS Microbiol. Lett. 141: 37-43
  9. Grosjean, H. and W. Fiers. 1982. Preferential codon usage in genes: The optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18: 199-209 https://doi.org/10.1016/0378-1119(82)90157-3
  10. Halstead, J. R., P. E. Vercoe, H. J. Gilbert, K. Davidson, and G. P. Hazlewood. 1999. A family 26 mannanase produced by Clostridium thermocellum as a component of the cellulosome contains a domain which is conserved in mannanases from anaerobic fungi. Microbiology 145: 3101-3108 https://doi.org/10.1099/00221287-145-11-3101
  11. Hatada, Y., N. Takeda, K. Hirasawa, Y. Ohta, R. Usami, Y. Yoshida, W. D. Grant, S. Ito, and K. Horikoshi. 2005. Sequence of the gene for a high-alkaline mannanase from an alkaliphilic Bacillus sp. strain JAMB-750, its expression in Bacillus subtilis and characterization of the recombinant enzyme. Extremophiles 9: 497-500 https://doi.org/10.1007/s00792-005-0460-5
  12. Heo, S., J. Kwak, H.-W. Oh, D.-S. Park, K. S. Bae, D. H. Shin, and H.-Y. Park. 2006. Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16: 1753-1759
  13. Jung, K. H., Y. C. Chun, J.-C. Lee, J. H. Kim, and K.-H. Yoon. 1996. Cloning and expression of a Bacillus sp. 79-23 cellulase gene. Biotechnol. Lett. 18: 1077-1082 https://doi.org/10.1007/BF00137815
  14. Khanongnuch, C., T. Ooi, and S. Kinoshita. 1999. Cloning and nucleotide sequence of $\beta$-mannanase and cellulase genes from Bacillus sp. 5H. World J. Microbiol. Biotechnol. 15: 249-258 https://doi.org/10.1023/A:1008893606707
  15. Kurokawa, J., E. Hemjinda, T. Arai, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya. 2001. Sequence of the Clostridium thermocellum mannanase gene man26B and characterization of the translated product. Biosci. Biotechnol. Biochem. 65: 548-554 https://doi.org/10.1271/bbb.65.548
  16. Kweun, M. A., H. S. Kim, M.-S. Lee, J. H. Choi, and K.-H. Yoon. 2003. Mannanase production by a soybean isolate, Bacillus subtilis WL-7. Kor. J. Microbiol. Biotechnol. 31: 277-283
  17. Kweun, M. A., J. Y. Shon, and K.-H. Yoon. 2004. High-level expression of a Bacillus subtilis mannanase gene in Escherichia coli. Kor. J. Microbiol. Biotechnol. 32: 212-217
  18. Kweun, M. A. and K.-H. Yoon. 2004. Hydrolysis of galactomannan and manno-oligosaccharides by a Bacillus subtilis mannanase. Kor. J. Microbiol. Biotechnol. 32: 347-351
  19. Kweun, M. A., M.-S. Lee, J. H. Choi, K. H. Cho, and K.-H. Yoon. 2004. Cloning of a Bacillus subtilis WL-7 mannanase gene and characterization of the gene product. J. Microbiol. Biotechnol. 14: 1295-1302
  20. Lee, J.-H. and S. H. Choi. 2006. Xylanase production by Bacillus sp. A-6 isolated from rice bran. J. Microbiol. Biotechnol. 16: 1856-1861
  21. Ma, Y., Y. Xue, Y. Dou, Z. Xu, W. Tao, and P. Zhou. 2004, Characterization and gene cloning of a novel $\beta$-mannanase from alkaliphilic Bacillus sp. N16-5. Extremophiles 8: 447-454 https://doi.org/10.1007/s00792-004-0405-4
  22. Mendoza, N. S., M. Arai, K. Sugimoto, M. Ueda, T. Kawaguchi, and L. M. Joson. 1995. Cloning and sequencing of $\beta$-mannanase gene from Bacillus subtilis NM-39. Biochim. Biophys. Acta 1243: 552-554 https://doi.org/10.1016/0304-4165(95)00011-Y
  23. Meng, X., B. A. Slominski, L. D. Campbell, W. Guenter, and O. Jones. 2006. The use of enzyme technology for improved energy utilization from full-fat oilseeds. Part I: Canola seed. Poult. Sci. 85: 1025-1030 https://doi.org/10.1093/ps/85.6.1025
  24. Miller, M. L., R. Blum, W. E. Glennon, and A. L. Burton. 1960. Measurement of carboxymethylcellulase activity. Anal. Biochem. 2: 127-132
  25. Oh, Y. P., J.-M. Lee, K. H. Cho, and K.-H. Yoon. 2002. Isolation and enzyme production of a mannanase-producing strain, Bacillus sp. WL-3. Kor. J. Microbiol. Biotechnol. 30: 247-252
  26. Paik, H. D., S. K. Lee, S. Heo, S. Y. Kim, H. H. Lee, and T. J. Kwon. 2004. Purification and characterization of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 from Chungkookjang. J. Microbiol. Biotechnol. 14: 829-835
  27. Sakakibara, Y., K. Tsutsumi, K. Nakamura, and K. Yamane. 1993. Structural requirements of Bacillus subtilis $\alpha$-amylase signal peptide for efficient processing: In vivo pulse-chase experiments with mutant signal peptides. J. Bacteriol. 175: 4203-4212 https://doi.org/10.1128/jb.175.13.4203-4212.1993
  28. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Mannual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A
  29. Slominski, B. A., X. Meng, L. D. Campbell, W. Guenter, and O. Jones. 2006. The use of enzyme technology for improved energy utilization from full-fat oilseeds. Part II: Flaxseed. Poult. Sci. 85: 1031-1037 https://doi.org/10.1093/ps/85.6.1031
  30. Stoll, D., A. Boraston, H. Stalbrand, B. W. McLean, D. G. Kilburn, and R. A. J. Warren. 2000. Mannanase Man26A from Cellulomonas fimi has a mannan-binding module. FEMS Microbiol. Lett. 183: 265-269 https://doi.org/10.1111/j.1574-6968.2000.tb08969.x
  31. Sunna, A., M. D. Gibbs, C. W. J. Chin, P. J. Nelson, and P. L. Bergquist. 1999. A gene encoding a novel mutidomain $\beta$-1,4-mannanase from Caldibacillus cellulovorans and action of the recombinant enzyme on kraft pulp. Appl. Environ. Microbiol. 66: 664-670 https://doi.org/10.1128/AEM.66.2.664-670.2000
  32. Tamaru, Y. and R. H. Doi. 2000. The engL gene cluster of Clostridium cellulovorans contains a gene for cellulosomal ManA. J. Bacteriol. 182: 244-247 https://doi.org/10.1128/JB.182.1.244-247.2000
  33. Virupakshi, S., K. Gireesh Baru, and G. R. Naik. 2005. Partial purification and characterization of thermostable alkaline $\beta$-mannanase from Bacillus sp. JB-99 suitable for pulp bleaching. J. Microbiol. Biotechnol. 15: 689-693
  34. Yoshida, S., Y. Sako, and A. Uchida. 1998. Cloning, sequence analysis, and expression in Escherichia coli of a gene coding for an enzyme from Bacillus circulans K-1 that degrades guar gum. Biosci. Biotechnol. Biochem. 62: 514-520 https://doi.org/10.1271/bbb.62.514
  35. Zou, X. T., X. J. Qiao, and Z. R. Xu. 2006. Effect of $\beta$-mannanase (Hemicell) on growth performance and immunity of broilers. Poult. Sci. 85: 2176-2179 https://doi.org/10.1093/ps/85.12.2176