Cloning and Characterization of Monofunctional Catalase from Photosynthetic Bacterium Rhodospirillum rubrum S1

  • Lee, Dong-Heon (Department of Life Science, Cheju National University) ;
  • Oh, Duck-Chul (Department of Life Science, Cheju National University) ;
  • Oh, You-Sung (Department of Life Science, Cheju National University) ;
  • Malinverni, Juliana C. (Biotechnology Center for Agriculture and the Environment, Rutgers-The State University of New Jersey, Cook College Campus) ;
  • Kukor, Jerome J. (Biotechnology Center for Agriculture and the Environment, Rutgers-The State University of New Jersey, Cook College Campus) ;
  • Kahng, Hyung-Yeel (Department of Environmental Education, Sunchon National University)
  • Published : 2007.09.30

Abstract

In this study, an approx. 2.5-kb gene fragment including the catalase gene from Rhodospirillum rubrum S1 was cloned and characterized. The determination of the complete nucleotide sequence revealed that the cloned DNA fragment was organized into three open reading frames, designated as ORF1, catalase, and ORF3 in that order. The catalase gene consisted of 1,455 nucleotides and 484 amino acids, including the initiation and stop codons, and was located 326 bp upstream in the opposite direction of ORF1. The catalase was overproduced in Escherichia coli UM255, a catalase-deficient mutant, and then purified for the biochemical characterization of the enzyme. The purified catalase had an estimated molecular mass of 189 kDa, consisting of four identical subunits of 61 kDa. The enzyme exhibited activity over a broad pH range from pH 5.0 to pH 11.0 and temperature range from $20^{\circ}C$ to $60^{\circ}C$C. The catalase activity was inhibited by 3-amino-1,2,4-triazole, cyanide, azide, and hydroxylamine. The enzyme's $K_m$ value and $V_{max}$ of the catalase for $H_2O_2$ were 21.8 mM and 39,960 U/mg, respectively. Spectrophotometric analysis revealed that the ratio of $A_{406}$ to $A_{280}$ for the catalase was 0.97, indicating the presence of a ferric component. The absorption spectrum of catalase-4 exhibited a Soret band at 406 nm, which is typical of a heme-containing catalase. Treatment of the enzyme with dithionite did not alter the spectral shape and revealed no peroxidase activity. The combined results of the gene sequence and biochemical characterization proved that the catalase cloned from strain S1 in this study was a typical monofunctional catalase, which differed from the other types of catalases found in strain S1.

Keywords

References

  1. Beers, R. F. Jr. and I. W. Sizer. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195: 133-140
  2. Bose, S. K., H. Gest, and J. G. Ormerod. 1962. Lightactivated hydrogenase activity in photosynthetic bacterium: A permeability phenomenon. J. Biol. Chem. 236: 13-14
  3. Chiu, J. T., P. C. Loewen, J. Switala, R. B. Gennis, and R. Timkovich. 1989. Proposed structure for the prosthetic group of the catalase HPII from Escherichia coli. J. Am. Chem. Soc. 111: 7046-7050 https://doi.org/10.1021/ja00200a023
  4. Claiborne, A. and I. Fridovich. 1979. Purification of the o-dianisidine peroxidase from Escherichia coli B. Physicochemical characterization and analysis of its dual catalatic and peroxidatic activities. J. Biol. Chem. 254: 4245- 4252
  5. Halliwell, B. and J. M. C. Gutteridge. 1989. Free Radicals in Biology and Medicine, 2nd Ed. Oxford University Press, London
  6. Hochman, A. and I. Goldberg. 1991. Purification and characterization of a catalase-peroxidase and a typical catalase from the bacterium Klebsiella pneumoniae. Biochim. Biophys. Acta 1077: 298-307
  7. Hochman, A. and A. Shemesh. 1987. Purification and characterization of a catalase-peroxidase from the photosynthetic bacterium Rhodopseudomonas capsulata. J. Biol. Chem. 262: 6871-6876
  8. Imlay, J. A. and S. Linn. 1988. DNA damage and oxygen radical toxicity. Science 240: 1302-1309 https://doi.org/10.1126/science.3287616
  9. Kagawa, M., N. Murakoshi, Y. Nishigawa, G. Matsumoto, Y. Kurata, T. Mizobata, Y. Kawata, and J. Nagai. 1999. Purification and cloning of a thermostable manganese catalase from a thermophilic bacterium. Arch. Biochem. Biophys. 362: 346-355 https://doi.org/10.1006/abbi.1998.1041
  10. Kang, Y. S., D. H. Lee, B. J. Yoon, and D. C. Oh. 2006. Purification and characterization of a catalase from photosynthetic bacterium Rhodospirillum rubrum S1 grown under anaerobic conditions. J. Microbiol. 44: 185-191
  11. Kang, Y. S., Y. J. Kim, C. O. Jeon, and W. Park. 2006. Characterization of naphthalene-degrading Pseudomonas species isolated from pollutant-contaminated sites: Oxidative stress during their growth on naphthalene. J. Microbiol. Biotechnol. 16: 1819-1825
  12. Kim, E. J., S. B. Yoo, M. S. Kim, and J. K. Lee. 2005. Improvement of photoheterotrophic hydrogen production of Rhodobacter sphaeroides by removal of B800-850 lightharvesting complex. J. Microbiol. Biotechnol. 15: 1115- 1119
  13. Kim, H. P., J. H. Lee, Y. C. Hah, and J. H. Roe. 1994. Characterization of the major catalase from Streptomyces coelicolor ATCC 10147. Microbiology 140: 3391-3397 https://doi.org/10.1099/13500872-140-12-3391
  14. Kono, Y. and I. Fridovich. 1983. Isolation and characterization of the pseudocatalase of Lactobacillus plantarum. J. Biol. Chem. 258: 6015-6019
  15. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  16. Lee, Y. D., B. Y. Moon, J. P. Choi, H. G. Chang, B. S. Noh, and J. H. Park. 2005. Isolation, identification and characterization of aero-adaptive Campylobacter jejuni. J. Microbiol. Biotechnol. 15: 992-1000
  17. Lim, H. K., Y. M. Kim, D. H. Lee, H. Y. Kahng, and D. C. Oh. 2001. Analysis of catalases from photosynthetic bacterium Rhodospirillum rubrum S1. J. Microbiol. 39: 168-176
  18. Loewen, P. C. and J. Switala. 1986. Purification and characterization of catalase HP II from Escherichia coli K12. Biochem. Cell Biol. 64: 638-646 https://doi.org/10.1139/o86-088
  19. Loewen, P. C. 1992. Regulation of bacterial catalase synthesis, pp. 96-116. In J. Scanodalios (ed.), Molecular Biology of Free Radical Scavenging System. Cold Spring Harbor Laboratory Press, New York
  20. Murray, M. G. and W. C. Thompson. 1989. Preparation of genomic DNA from bacteria, pp. 2.4.1-2.4.5. In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (eds.), Current Protocols in Molecular Biology, Vol. 1. Wiley, New York
  21. Nadler, V., I. Goldberg, and A. Hochman. 1986. Comparative study of bacterial catalase. Biochem. Biophys. Acta 82: 234- 241
  22. Pettigrew, G. W. and K. R. Brown. 1988. Free and membranebound forms of bacterial cytochrome c4. Biochem. J. 252: 427-435 https://doi.org/10.1042/bj2520427
  23. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, New York
  24. Schultz, J. E. and P. E. Weaver. 1982. Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata. J. Bacteriol. 149: 181-191
  25. Smith, P. K., R. I. Krohn, G. T. Hermanson, A. K. Mallia, E. K. Gartner, N. M. Goeke, B. J. Olson, and D. C. Klenk. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76-85 https://doi.org/10.1016/0003-2697(85)90442-7
  26. Terzenbach, D. P. and M. Blaut. 1998. Purification and characterization of a catalase from the nonsulfur phototrophic bacterium Rhodobacter sphaeroides ATH2.4.1 and its role in the oxidative stress response. Arch. Microbiol. 169: 503- 508 https://doi.org/10.1007/s002030050603
  27. Ueda, M., H. Kinoshita, T. Yoshida, N. Kamashwa, M. Osumi, and A. Tanaka. 2003. Effect of catalase-specific inhibitor 3-amino-1,2,4-triazole on yeast peroxisomal catalase in vivo. FEMS Microbiol. Lett. 219: 93-98 https://doi.org/10.1016/S0378-1097(02)01201-6
  28. Uffern, R. L. and R. S. Wolfe. 1970. Anaerobic growth of purple nonsulfur bacteria under dark condition. J. Bacteriol. 104: 462-472
  29. Van Niel, C. B. 1941. The bacterial photosynthesis and their importance for the general problem of photosynthesis. Adv. Enzymol. 1: 263-328
  30. Wayne, L. G. and G. A. Diaz. 1986. A double staining method for differentiating between two classes of mycobacterial catalase in polyacrylamide gels. Anal. Biochem. 157: 89-92 https://doi.org/10.1016/0003-2697(86)90200-9
  31. Yumoto, I., Y. Fukumori, and T. Yamnaka. 1990. Purification and characterization of catalase from a facultative alkaliphilic Bacillus. J. Biochem. 108: 583-587 https://doi.org/10.1093/oxfordjournals.jbchem.a123246
  32. Zamocky, M. and F. Koller. 1999. Understanding the function of catalases: Clues from molecular evolution and in vitro mutagenesis. Prog. Biophys. Mol. Biol. 72: 19-66 https://doi.org/10.1016/S0079-6107(98)00058-3