Two Threonine Residues Required for Role of AfsKav in Controlling Morphogenesis and Avermectin Production in Streptomyces avermitilis

  • Rajkarnikar, Arishma (Department of Biological Science, Institute of Bioscience and Biotechnology, Myongji University) ;
  • Kwon, Hyung-Jin (Department of Biological Science, Institute of Bioscience and Biotechnology, Myongji University) ;
  • Ryu, Yeon-Woo (Department of Molecular Science and Technology, Ajou University) ;
  • Suh, Joo-Won (Department of Biological Science, Institute of Bioscience and Biotechnology, Myongji University)
  • Published : 2007.09.30

Abstract

AfsKav is a eukaryotic-type serine/threonine protein kinase, required for sporulation and avermectin production in Streptomyces avermitilis. In terms of their ability to complement SJW4001 (${\Delta}afsK$-av), afsK-av mutants T165A and T168A were not functional, whereas mutants T165D and T168D retained their ability, indicating that Thr-165 and Thr-168 are the phosphorylation sites required for the role of AfsKav. Expression of the S-adenosylmethione synthetase gene promoted avermectin production in the wild-type S. avermitilis, yet not in the mutant harboring T168D or T165D, demonstrating that tandem phosphorylation on Thr-165 and Thr-168 in AfsKav is the mechanism modulating avermectin production in response to S-adenosylmethione accumulation in S. avermitilis.

Keywords

References

  1. Bentley, S. D., K. F. Charter, A. M. Cerdeno-Tarraga, G. L. Challis, N. R. Thomson, K. D. James, D. E. Harris, M. A. Quail, H. Kieser, D. Harper, A. Bateman, S. Brown, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147 https://doi.org/10.1038/417141a
  2. Bierman, N., R. Logan, K. O'Brien, E. T. Seno, R. N. Rao, and B. E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: 43-49 https://doi.org/10.1016/0378-1119(92)90627-2
  3. Boitel, B., M. Ortiz-Lombardía, R. Durán, F. Pompeo, S. T. Cole, C. Cerveñansky, and P. M. Alzari. 2003. PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phosphor-Ser/Thr phosphatase, in Mycobacterium tuberculosis. Mol. Microbiol. 49: 1493-1508 https://doi.org/10.1046/j.1365-2958.2003.03657.x
  4. Chong, Y., J. Young, J. Kim, Y. Lee, K. S. Park, J. H. Cho, H. J. Kwon, J. W. Suh, and Y. Lim. 2006. S-Adenosyl- L-methionine analogues to enhance the production of actinorhodin. J. Microbiol. Biotechnol. 16: 1154-1157
  5. Cole, S. T., R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. V. Gordon, K. Eiglmeier, S. Gas, C. E. Barry III, F. Tekaia, K. Badcock, et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genomic sequence. Nature 393: 537-544 https://doi.org/10.1038/31159
  6. Corpet, F. 1988. Multiple sequence alignment with hierarchical clustering. Nucl. Acids Res. 16: 10881-10890 https://doi.org/10.1093/nar/16.22.10881
  7. Duran, R., A. Villarino, M. Bellinzoni, A. Wehenkel, P. Fernandez, B. Boitel, S. T. Cole, P. M. Alzari, and C. Cervenansky. 2005. Conserved autophosphorylation pattern in activation loops and juxtamembrane regions of Mycobacterium tuberculosis Ser/Thr protein kinases. Biochem. Biophys. Res. Commun. 333: 858-867 https://doi.org/10.1016/j.bbrc.2005.05.173
  8. Kenelly, P. J. 2002. Protein kinases and protein phosphatases in prokaroytes: A genome perspective. FEMS Microbiol. Lett. 206: 1-8 https://doi.org/10.1111/j.1574-6968.2002.tb10978.x
  9. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. John Innes Centre, Norwich Research Park, England
  10. Kim, D. J., J. H. Huh, Y. Y. Yang, C. M. Kang, I. H. Lee, C. G. Hyun, S. K. Hong, and J. W. Suh. 2003. Accumulation of S-adenosyl-L-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J. Bacteriol. 185: 592-600 https://doi.org/10.1128/JB.185.2.592-600.2003
  11. Lee, Y., J. Young, H. J. Kwon, J. W. Suh, J. Kim, Y. Chong, and Y. Lim. 2006. AdoMet derivatives induce the production of actinorhodin in Streptomyces coelicolor. J. Microbiol. Biotechnol. 16: 965-968
  12. Mandec, E., A. Stensballe, S. Kjellström, L. Cladière, M. Obuchowski, O. N. Jensen, and S. J. Seror. 2003. Mass spectrometry and site-directed mutagenesis identify several autophosphorylated residues required for the activity of PrkC, a Ser/Thr kinase from Bacillus subtilis. J. Mol. Biol. 330: 459-472 https://doi.org/10.1016/S0022-2836(03)00579-5
  13. Matsumoto, A., S. K. Hong, H. Ishizuka, S. Horinouchi, and T. Beppu. 1994. Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by a eukaryotic-type protein kinase. Gene 146: 47-57 https://doi.org/10.1016/0378-1119(94)90832-X
  14. Ogawa, H., N. Aoyagi, M. Watanabe, and H. Urabe. 1999. Sequences and evolutionary analyses of eukaryotic-type protein kinases from Streptomyces coelicolor A3(2). Microbiology 145: 3343-3352 https://doi.org/10.1099/00221287-145-12-3343
  15. Omura, S., H. Ikeda, J. Ishikawa, A. Hanamoto, C. Takahashi, M. Shinose, Y. Takahashi, H. Horikawa, H. Nakazawa, T. Osonoe, H. Kikuchi, T. Shiba, Y. Sakaki, and M. Hattori. 2001. Genome sequence of an industrial microorganism Streptomyces avermitilis: Deciphering the ability of producing secondary metabolites. Proc. Natl. Acad. Sci. USA 98: 12215-12220
  16. Petrickova, K. and M. Petricek. 2003. Eukaryotic-type protein kinases in Streptomyces coelicolor: Variation on a common theme. Microbiology 149: 1609-1621 https://doi.org/10.1099/mic.0.26275-0
  17. Rajkanikar, A., H. J. Kwon, Y. W. Ryu, and J. W. Suh. 2006. Catalytic domain of AfsKav modulates both secondary metabolism and morphologic differentiation in Streptomyces avermitilis ATCC 31272. Curr. Microbiol. 53: 204-208 https://doi.org/10.1007/s00284-006-0062-1
  18. Tomono, A., M. Mashiko, T. Shimazu, H. Inoue, H. Nagasawa, M. Yoshida, Y. Ohnishi, and S. Horinouchi. 2006. Self-activation of serine/threonine kinase AfsK on autophosphorylation at threonine-168. J. Antibiot. 59: 117-123 https://doi.org/10.1038/ja.2006.18
  19. Umeyama, T., P. C. Lee, K. Ueda, and S. Hourinochi. 1999. An AfsK/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus. Microbiology 145: 2281-2292 https://doi.org/10.1099/00221287-145-9-2281
  20. Umeyama, T., P. C. Lee, and S. Hourinochi. 2002. Protein serine/threonine kinases in signal transduction for secondary metabolism and morphogenesis in Streptomyces. Appl. Microbiol. Biotechnol. 59: 419-425 https://doi.org/10.1007/s00253-002-1045-1
  21. Vara, J., M. Lewandowska-Skarbek, Y. G. Wang, S. Donadio, and C. R. Hutchinson. 1989. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythea (Streptomyces erythreus). J. Bacteriol. 171: 5872-5881 https://doi.org/10.1128/jb.171.11.5872-5881.1989
  22. Young, T. A., B. Delagoutte, J. A. Endrizzi, A. M. Falick, and T. Alber. 2003. Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Nat. Struct. Biol. 10: 168-174 https://doi.org/10.1038/nsb897
  23. Yoon, G. S., K. H. Ko, H. W. Kang, J. W. Suh, Y. S. Kim, and Y. W. Ryu. 2006. Characterization of S-adenosylmethionine synthetase from Streptomyces avermitilis NRRL8165 and its effect on antibiotic production. Enz. Microb. Technol. 39: 466-473 https://doi.org/10.1016/j.enzmictec.2005.11.049
  24. Zhang, C. C. 1996. Bacterial signaling involving eukaryotictype protein kinases. Mol. Microbiol. 20: 9-15 https://doi.org/10.1111/j.1365-2958.1996.tb02483.x
  25. Zhao, X. Q., Y. Y. Jin, H. J. Kwon, Y. Y. Yang, and J. W. Suh. 2006. S-Adenosylmethionine (SAM) regulates antibiotic biosynthesis in Streptomyces spp. in a mode independent of its role as a methyl donor. J. Microbiol. Biotechnol. 16: 927-932