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This study deals with a type of vehicle routing problem faced by manager of some department stores during peak 
sales periods. The problem is to find a set of traveling paths of vehicles that leave a department store and arrive 
at a destination specified for each vehicle after visiting customers without violating time and capacity 
constraints. The mathematical model is formulated with the objective of maximizing the sum of the rewards 
collected by each vehicle. Since the problem is known to be NP-hard, a heuristic algorithm is developed to find 
the solution. The performance of the algorithm is compared with the optimum solutions obtained from CPLEX 
for small size problems and a priority-based Genetic Algorithm for large size problems.

Keywords: Heuristic, Multi-path Orienteering Problem, Time and Capacity Constraints

1. Introduction

In holiday seasons such as Thanksgiving and year- 
end sales period with Christmas, managers of some 
department stores face a tremendously large amount 
of delivery requests of customers. The customers in 
general want to have their purchased products deli-
vered to designated location by a given date. One 
doable way for the managers is to get delivery 
support from some of their employees who com-
mute by car. They are asked to deliver customers’ 
orders on their way home from the work place. 
Now, the manager’s problem is how to assign the 

delivery requests to each employee. <Figure 1> 
shows an example of graphic solution for the pro-
blem with four helpful employees, A, B, C and D. 
White dots in the figure denote the locations of 
customers while black dots the locations of emplo-
yees’ houses. For instance, employee A is required 
to arrive at his house no later than three hours 
after his departure at the depot. His car is known 
to have the loading capacity of 2.0m3. A sequence 
of white dots connected by arrow signs forms a 
path and only the customers on each path are visited 
by the corresponding employee. We find that the 
problem is similar to the orienteering problem (OP), 
the team orienteering problem (TOP), the maximum
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  Figure 1. An example of graphic solution of 
MPOPCC

collection problem (MCP), and the multiple-tour ma-
ximum collection problem (MTMCP). Thus we name 
the manager’s problem ‘the multi-path orienteering 
problem with capacity constraint (MPOPCC). MPO-
PCC and the problems mentioned above are similar 
in the following aspects: (1) the concept of “reward” 
exists and (2) not all the customers need to be 
visited. On the other hand, they differ in the sense 
that the destination, time limit, and capacity of each 
vehicle are not necessarily identical in MPOPCC, 
while they are the same in the other problems.

Note that MPOPCC is also different from the ve-
hicle routing problem (VRP). In ordinary VRP, all 
customers need to be visited with the objective of 
finding a set of vehicle routes in a way to mini-
mize the total cost without exceeding vehicle capa-
cities. Thus, existing algorithms developed for VRP 
cannot be directly applicable to the MPOPCC. The 
orienteering problem (OP) was studied by many re-
searchers. The objective of OP is to maximize the 
total collected reward within a prescribed time 
limit. Laporte and Martello (1990) developed an 
exact solution method using a branch and bound 
method which can solve up to 90 vertices in tested 
problems within 100 seconds. Leifer and Rosen-
wein (1994) proposed a procedure to obtain upper 
bounds by solving three successive linear programs 
tightening the LP relaxation by adding constraints 
and valid inequalities. Fischetti, Gonzalez, and Toth 
(1998) developed a branch-and-cut algorithm for 
finding an optimal OP solution. They proposed an 
effective way to use a family of cuts within the 
overall branch-and-cut framework. It is known that 
OP is NP-hard (Golden, Levy and Vohra, 1987) 
and so many different heuristic solutions appeared 
in the literature. Tsiligirides (1984) developed two 

heuristics, a stochastic algorithm using a Monte Carlo 
technique and a deterministic algorithm modifying 
Wren and Holiday’s (1972) method for a vehicle- 
scheduling problem. Hayes and Norman (1984) used 
a simple functional equation of dynamic program-
ming. Golden, Levy, and Vohra (11) developed a 
heuristic procedure using a ‘bang for buck’ inser-
tion and a center of gravity improvement. With the 
center of gravity idea and Tsiligirides’s random-
ization concept, Golden, Wang, and Liu (1988) pro-
posed a multifaceted heuristic. Keller (1989) modi-
fied his algorithm for the multi-objective vending 
problem (Keller and Goodchild, 1988) to solve the 
orienteering problem. The algorithm consists of a 
path-construction stage using a desirability measure 
and an improvement stage. Chao, Golden and Wasil 
(1996) presented a heuristic that consists of two- 
point exchange, one-point movement, clean up, and 
reinitialization. Tasgetiren and Smith (2000) pre-
sented a genetic algorithm to solve the OP. Liang, 
Kulturel-Konak and Smith (2002) compared an ant 
colony optimization method and tabu search for the 
OP. Mocholi, Jaen and Canos (2005) proposed a 
distributed ant colony algorithm to solve large scale 
OP which approach is based on the ideas of Grid 
Computing so that large instances of OP can be 
solved collaboratively.

The maximum collection problem (MCP) is a spe-
cial case of OP where the start and end point are 
the same. MCP is a routing problem where the ob-
jective is to maximize the sum of the rewards col-
lected at the customers visited. Kataoka and Morito 
(1988) proposed a branch and bound procedure to 
solve optimally. Ramesh, Yoon and Karwan (1992) 
used Lagrangian relaxation along with improvement 
procedures within a branch and bound method to 
solve large, randomly generated test problems that 
contain as many as 150 nodes. Deitch and Ladany 
(2000) utilized and modified Tsiligirides’s heuristic 
to solve the one-period bus touring problem which 
consists of determining the optimal subset of tou-
rist sites to be visited and scenic routes to be trav-
ersed between a start and end point that both coin-
cide.

There are other problems considering multiple 
paths or tours that have received relatively little at-
tention than the single path or tour. The team ori-
enteering problem (TOP) presented by Chao, Golden 
and Wasil (1996) is an extended version of OP. In 
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TOP, the start and end points are different and 
there is more than one vehicle. The objective of 
TOP is to maximize the total team rewards without 
violating a specified time limit of each vehicle. 
Their heuristic is based on the notion of record- 
to-record improvement similar with their heuristic 
algorithm for the OP except reinitialization step. 
They compared their results with modified Tsiligiri-
des’s stochastic algorithm for OP.

There is another type of multi-path problem, the 
multiple-tour maximum collection problem (MTMCP). 
The objective of MTMCP is to maximize the total 
reward collected on all of the tours without ex-
ceeding the time constraints where the start and 
end nodes are the same. Butt and Cavalier (1994) 
developed a heuristic solution procedure. They 
found the problem from the athletic department of 
a college. The campus; they had to visit during the 
specified hours of a day and limited number of 
days. Butt and Ryan (1999) presented an optimal 
solution procedure for MTMCP. This procedure is 
based on a generalized set-partitioning formulation 
and uses constraint branching and tour storage 
techniques to improve solution time. Their proce-
dure works well when the number of nodes visited 
in any tour is relatively small. Recently, Tang and 
Miller-Hooks (2005) used one of the meta-heu-
ristic, tabu search embedded in an adaptive memo-
ry procedure. 

Recently, Hwang, Park and Gen (2006) proposed 
a priority-based genetic algorithm (pGA) to solve a 
type of MPOPCC that does not consider capacity 
constraint. In this study, we develop the mathemat-
ical model of MPOPCC and then propose a heu-
ristic solution procedure. The performance of the 
heuristic is compared with the solutions of various 
test problems obtained from CPLEX and pGA.

2.  Mathematical Formulation

We use an undirected graph   = { , } to 
formulate MPOPCC with   number of vehicles in-
to the mathematical model, where   = {0, 1, 2,…, 
} is a set of nodes and  ⊆  ×  is a set of 
arcs. Each node i in N is associated with a reward
≥ .   can be partitioned into three subsets of 
nodes, i.e.,   ∪∪ , where   , 

    ⋯   and     
  ⋯  . Node 0 in NS represents the depot 
(or department store) from which all K vehicles 
leave to visit customers. NC is a set of customer 
nodes associated with delivery request while ND is 
a set of destination nodes (i.e., employees’ houses) 
of vehicles. Each arc in A is associated with a 
symmetric and nonnegative value of tij, the time 
required for the vehicle to travel between node i 
and j. Euclidean distance with constant speed of 
vehicles is assumed for tij. We want to find a set 
of K paths, in which each path starts from node 0 
and ends at a given node in ND in a way to max-
imize the total rewards collected by the vehicles. 
In the solution of MPOPCC, not all the customers 
need to be visited due to the time and capacity 
constraints. The reward of a node in NC is award-
ed only once. In this study, we assume that cus-
tomer node can be visited by at most one vehicle 
to facilitate the development of the model. As con-
straint, the total time required to visit the nodes in 
each path should not exceed a specified time limit, 
  +  . As another constraint, the total volume 
of the items delivered in each path should not ex-
ceed a given capacity of each vehicle. Note that 
for the second constraint only the amount of vol-
ume is counted while giving no consideration to 
the physical configuration of each item to be 
delivered. 

The following notations are adopted to develop 
the model:
 the number of nodes excluding the depot 

node
 the number of available vehicles at the depot
 reward associated with customer node i. It 

could be the monetary value of the items to 
be delivered to node i or any positive real 
number.

 travel time from node i to node j
  travel time from the depot node to the desti-

nation node of vehicle k
  overtime allowed for vehicle k
 volume of the items to be delivered to cus-

tomer node i
  volume capacity of vehicle k

Also, the following 0 -1 decision variables are 
introduced.

   if arc(i, j) is in the path of vehicle k
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otherwise, 0
   if node i is in any path

otherwise, 0

We formulate MPOPCC as follows:
(P) max 

∈
  (1)

   subject to :


∈∪


 




   ∀∈ (2)


∈∪


 




   ∀∈ (3)


∈∪


  

∈∪




 ∀ ∈ (4)


∈
 
   ∀ (5)


∈∪

    
   ∀ (6)


∈

 
 ≤     ∀ (7)


∈

 
 ≤   ∀ (8)


∈   

 ≤     ⊂ 

＼  ≥  ∀ (9)


  ∈   ∀ ∈ (10)

The objective function (1) maximizes the total re-
wards collected from visiting modes by K vehicles. 
Constraints (2) and (3) are the so-called assignment 
constraints, which imply that for any customer 
node at most only one vehicle can visit as well as 
depart from the node. Constraint (4) is related with 
the flow conservation. It implies that the vehicle 
should come out of the node if it enters a custom-
er node. It also guarantees the continuity of each 
path. Constraints (5) and (6) ensure that each ve-
hicle should start from the depot node and end at 
the destination node, respectively. Constraint (7) is 
for the time restriction and constraint (8) is for the 
capacity restriction of the vehicles. Constraint (9) 
is for preventing sub-tour. If the index k is addi-
tionally eliminated from (P), the mathematical for-
mulation of MPOPCC is the same as that of OP, 
which implies that the complexity of MPOPCC 

equals at least that of OP. One may try to solve 
MPOPCC by applying an algorithm developed for 
OP K times consecutively. But the approach has a 
shortcoming of ignoring the sequence dependency 
and may result in poor solution.

3.  Heuristic Algorithm

MPOPCC is shown to have a more complicated 
problem structure than OP which is known to be 
NP-hard. Therefore, we develop a heuristic algo-
rithm of MPOPCC in this section. It is a con-
struction type algorithm consisting of four steps. 
First, utilizing the concept of ellipse (Keller, 1989), 
k number of ellipses is drawn taking the depot 
node and destination node as two foci of each el-
lipse and time limit,    , as the length of ma-
jor axis. Only the customer nodes inside a given el-
lipse become candidates in constructing the corre-
sponding path. Note that any path containing nodes 
outside of the corresponding ellipse inevitably vio-
lates the time limit constraint. Second, K number 
of paths is first initialized by connecting the depot 
node to each destination node and then augmented. 
Third, we select an unrouted customer node and 
insert it in the current partial paths. Finally, the se-
lection and insertion steps are repeated until the 
paths are full with respect to the time limit and/or 
capacity constraint. 

3.1  Selection and Insertion of Node 
An unrouted customer node is selected based on 

the value of the priority function which is obtained 
by combining three different evaluation functions. 
Once the customer node with the largest priority 
function value is selected, then its insertion loca-
tion is determined based on . Suppose node j is 
selected and then inserted between two adjacent 
nodes, nodes i and l, in the current partial path. 
The additional vehicle travel time occurred by the 
insertion can be expressed as       
∀  and l. Let  be the minimum among   
and will be called the minimum required insertion 
time of node j. In our heuristics, the arc associated 
with is selected as the insertion location. The 
selection of unrouted customer node to be added to 
paths is related with the question of “Does that 
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Figure 3. Example of priority vectors

particular customer node provide enough rewards 
considering the additional travel time and vehicle 
capacity required for the visit?” In this study the 
factors chosen to be criteria for the selection proc-
ess are as follow: (1) (relative amount of reward) 
relative amount of reward that can be collected, (2) 
(relative length of additional driving time). relative 
length of additional driving time needed consider-
ing the available operation time of vehicle, and (3) 
(relative amount of capacity required) relative amo-
unt of additional capacity needed considering the 
capacity remained. We develop the evaluation func-
tions corresponding to the factors above and they 
are

  
∈  




∈    


,  ≤  ≤  (11)

  
 

 (12)

  
 

 (13)

Let   be the set of customer nodes contained 
in ellipse k. Also, let    be the set of cus-
tomer nodes in the circular neighborhood centered 
at node i with radius r % (see <Figure 2>). In , 
we consider not only the reward of the node i but 
also those of the neighboring nodes in   . 
The denominator implies the sum of the rewards in 
the ellipse k and thus   measures relative size 
of rewards associated with node i and its neighbor 
nodes in ellipse k. The numerator of   is the 
minimum insertion time of node i while the deno-
minator indicates the overtime available of employee

r

destinationcustomerdepot

Figure. 2 Graphic representation of an evaluation 
function associated with reward

 at the time of evaluation. The numerator of   
is the volume of the items to be delivered to cus-
tomer i while the denominator is the remaining ca-
pacity of the vehicle k at the time of evaluation

3.2  Priority Functions
At each construction step of the paths, we eval-

uate all the unrouted customers with three evalua-
tion functions of (11), (12) and (13). Now, these 
function values have to be integrated such that the 
result provides a basis for the selection of the most 
qualified node. Among various possible functional 
forms, this study formulates the following two 
(will be called ‘priority function’) and examines 
the performances.

  
× 
  (14)

   ×  ×   (15)

where  ,   and  are positive constants. 
Note that the priority function has a larger value 

when the relative size of reward becomes bigger 
while either the relative amount of additional driv-
ing time or capacity required becomes smaller. For 
selection procedure, for each unrouted customer we 
calculate the priority function vector, column vector 
of size K, in which the ith element is the priority 
function value associated with vehicle i. Note that 
the value of the ith element becomes zero when 
the node of unrouted customer is outside of ellipse 
i. The node with the largest priority function value 

③
(0.0, 0.6, 0.5)

(0.5, 0.0, 0.0)

④

⑧
  (0.0, 0.0, 0.5)

(0.0, 0.4, 0.0)

⑦

⑨      (0.6, 0.8, 0.3)

A

B

depot

C

15
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is selected and inserted between the two adjacent 
nodes associated with . The procedure is re-
peated until no more insertion is possible. <Figure 
3> illustrates an example of the priority vectors 
with three employees, A, B, and C. In this case, 
0.8 is the largest and so customer 9 is selected 
and inserted in the arc associated with   in the 
current path of vehicle B.

The paths of vehicles for (P) can be constructed 
using the following procedure.

Priority algorithm
Step 1：Utilizing the concept of ellipse (Keller, 

1989), k number of ellipses is drawn tak-
ing the depot node and destination node 
as two foci of each ellipse and time limit, 
 ×  , as the length of major axis. 
Then K number of paths is initialized by 
connecting the depot node to each desti-
nation node.

Step 2：Evaluate priority function vectors for all 
unrouted customer nodes and then select a 
customer node with the largest priority 
function value. In case of tie, the node 
with larger reward is selected. Node is se-
lected arbitrarily in case of the second tie.

Step 3：Insert it in the current partial path of the 
corresponding vehicle where it has the 
minimum insertion time.

Step 4：Repeat the steps 2 to 3 until it is not pos-
sible to include any unrouted customer 
node to the paths.

End;

4.  Numerical Experiment

We examined the effectiveness of the proposed 
heuristic algorithm through solving two sets of test 
problems, small size and large size ones, on P.C. 
with an AMD Athlon (tm) 64 Processor (1.81GHz, 
1.00GB). The programming language was Java for 
the priority algorithm and C++ for pGA of Hwang, 
Park and Gen (2006). CPLEX 9.0 was utilized to 
find the optimal solution. Also, the following pa-
rameter values were adopted for the heuristic algo-
rithm: 2%, 4%, ···, 20% for r and 0.5, 1.0, 2.0, 
3.0 for  ,   and , respectively. The pGA param-
eters were set as: crossover probability = 0.7; muta-

tion probability = 0.3; population size = 50. The maxi-
mum number of generation (maxGen) was 50 for 
the small size problems and 250 for the larger size 
problems. We compared the performances of the 
heuristics with pGA and CPLEX for the small size 
problems. For large size problems CPLEX failed to 
generate an optimal solution within a reasonable 
computational time and thus the heuristics was com-
pared only with pGA.

4.1  Generation of Test Problems 
In small size problems the number of customers 

ranges from 10 to 15 and the number of employ-
ees from 2 to 3. A total of 45 instances were de-
veloped with the following parameter values :

∙ Reward () is randomly generated using a uni-
form distribution in [5, 25] (integer)

∙ Overtime () of employee is randomly chosen 
from [20, 100] (integer)

∙ The coordinates of customer node and employ-
ee node are chosen from the interval [-25, 25] 
with uniform distribution (integer) with the co-
ordinates of depot node being (0, 0). 

∙ Volume () of items to be delivered to cus-
tomers is chosen from uniform [10, 30] (integer)

∙ Volume capacity ( ) of each vehicle is ran-
domly generated from [50, 100] (integer)

In large size problems the number of customers 
is either 50 or 100 with the number of employees 
being 3, 6 or 9. A total of 30 instances were gen-
erated with the following parameters :

∙ Reward () of customer nodes, volume () of 
items to be delivered to customers, overtime 
() of employees, and the coordinates of cus-
tomer nodes and employee nodes are found in 
the same way as in small sized problems.

∙ Volume capacity ( ) of each vehicle is ran-
domly chosen from [200, 400] (integer).

4.2  Computational Results

Let H1 and H2 denote the heuristic algorithms 
with the priority function of equation (14) and 
(15), respectively. <Table 1> shows the test results 
of the small size problems. It lists the problem 
number and performances of H1, H2, pGA and 
CPLEX. The first two digits in the problem num-
ber correspond to the number of customer nodes, 
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and the next two digits and last two digits imply 
the number of employees and the number of repli-
cation, respectively. For instance, the problem num-
ber 100203 implies that it is the third replication 
with 10 customers and 2 employees. To measure 
the relative performance of the algorithms, we in-
troduce GAP which is defines as

  
  

×(%)

where    and   is the objective function value 
obtained by CPLEX and other solution method, re-
spectively. For each solution method, the table shows 

the objective function value, GAP, and the compu-
tation time required (sec.). Only for small size pro-
blems CPLEX could generate an optimal solution. 
It can be observed that the average GAP is 11.2% 
for H1, 11.4% for H2, and 2.91% for pGA while 
the average running time of H1, H2, pGA and 
CPLEX are 0.27 sec., 0.60 sec., 6.00 sec. and 
6090.00 sec., respectively. As the problem size be-
comes bigger, the computation time required of 
CPLEX increases exponentially. In many cases, 
CPLEX failed to generate an optimal solution with-
in 24 computation hours, which is denoted by ‘-’ 
in the objective function value.

Table 1. Computational results for small size problems

Problem H1 H2 pGA CPLEX
Obj.
value

GAP
(%) time Obj.

value
GAP
(%) Time Obj.

value
GAP
(%) time Obj.

value time

100201 130   3.7 0.24 130   3.7 0.48 132   2.22 5.35 135     260
100202 112   9.68 0.14 112   9.68 0.29 112   9.68 4.78 124       28.75
100203  39 26.42 0.07   39 26.42 0.12   53   0 2.68   53         2.34
100204 108 10.74 0.12 108 10.74 0.22 121   0 2.90 121         9.83
100205 159   0 0.23 159   0 0.46 159   0 5.01 159         1.58
Average   95.4 10.11 0.16 109.6 10.11 0.314 115.4   2.53 4.14 118.4       60.5
110201 115 11.54 0.16 115 11.54 0.37 119   8.46 5.66 130     774.27
110202 182   0 0.29 182   0 0.67 182   0 6.41 182     232.61
110203 158   5.39 0.3 158   5.39 0.71 158   5.39 5.46 167       20.61
110204 114   8.8 0.22 116   7.2 0.48 120   4 5.26 125   3189.44
110205 136   7.48 0.2 136   7.48 0.44 139   5.44 5.75 147     637.36
Average 141   6.64 0.234 141.4   6.32 0.534 143.6   4.39 5.71 150.2     970.86
120201 190   0 0.31 190   0 0.65 190   0 6.54 190   1038.39
120202 104 16.8 0.21 104 16.8 0.51 125   0 5.34 125     263.01
120203 137 12.18 0.22 137 12.18 0.47 140 10.26 6.69 156   2018.31
120204 174 11.68 0.32 174 11.68 0.75 187   5.08 6.82 197 16354.5
120205 152 11.11 0.21 152 11.11 0.53 171   0 6.24 171     893.22
Average 151.4 10.35 0.254 151.4 10.35 0.582 162.6   3.1 6.33 167.8   4113.49
130201 173   0 0.36 173   0 0.87 173   0 7.56 173 46527.1
130202 105   8.7 0.16 105   8.7 0.38 115   0 4.92 115     764.953
130203 98 11.71 0.25   95 14.41 0.56   99 10.81 6.36 111 20082.3
130204 106 - 0.22 106 - 0.47 115 - 6.95 - -
130205 169   6.11 0.3 165   8.33 0.61 177   1.67 6.60 180   1987.3
Average 130.2   6.63 0.26 125.8   7.86 0.58 136.8   3.11 6.48 144.75 17340.41
140201 131 - 0.28 132 - 0.65 151 - 7.15 - -
140202 146 - 0.41 143 - 0.97 151 - 8.49 - -
140203 165 - 0.33 165 - 0.83 158 - 7.7 - -
140204 128 - 0.34 130 - 0.79 141 - 7.54 - -
140205 119 13.14 0.22 119 13.14 0.48 136   0.73 6.39 137 22615.3
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Average 131.8 - 0.32 131.8 - 0.74 147.4 - 7.47 - -
150201   85 - 0.16   85 - 0.32 143 - 5.78 - -
150202 135 - 0.25 135 - 0.6 189 - 8.30 - -
150203 129 - 0.28 129 - 0.59 133 - 7.11 - -
150204 213 - 0.54 214 - 1.21 223 - 8.78 - -
150205 173 - 0.4 176 - 0.87 176 - 8.14 - -
Average 147 - 0.32 147.8 - 0.72 172.8 - 7.62 - -
100301 122 31.84 0.23 122 31.84 0.46 179   0 5.09 179   150.33
100302 116 12.78 0.23 116 12.78 0.5 133   0 4.46 133 1235.28
100303 150 11.76 0.3 150 11.76 0.62 170   0 4.89 170     85.64
100304   98 15.52 0.18   98 15.52 0.4 107   7.76 4.22 116   134.8
100305 148   8.64 0.23 148   8.64 0.52 157   3.09 5.67 162 14992
Average 126.8 16.11 0.23 126.8 16.11 0.5 149.2   2.17 4.87 152 3319.61
110301   81 33.61 0.12   81 33.61 0.26 122   0 4.82 122 1231.07
110302 123 13.38 0.24 124 12.68 0.5 142   0 5.34 142 4703.6
110303 203   0 0.39 203   0 0.89 203   0 4.73 203   328.81
110304 167   2.91 0.31 167   2.91 0.75 172   0 5.88 172     28.47
110305   94 30.37 0.16   91 32.59 0.39 118 12.59 5.43 135 3452.08
Average 133.6 16.05 0.24 133.2 16.36 0.56 151.4   2.52 5.24 154.8 1948.81
120301 164 - 0.44 164 - 0.97 164 - 6.38 - -
120302 165 - 0.34 165 - 0.81 171 - 6.58 - -
120303 178 - 0.49 178 - 1.09 178 - 5.02 - -
120304 183 - 0.41 183 - 0.83 190 - 6.84 - -
120305 152 - 0.47 152 - 1.05 152 - 5.42 - -
Average 168.4 - 0.43 168.4 - 0.95 171 - 6.05 - -

<Table 2> shows the computational results for 
large size problems. Due to the unavailability of 
optimal solution, H1 and H2 are compared only 
with pGA. We observe that the proposed heuristics 
generate satisfactory results. Generally, H2 outper-
forms H1 and in several cases H2 gives better re-
sults than pGA. 

Table 2. Computational results for large size 
problems

Problem
H1 H2 pGA

Obj.
value time Obj.

value time Obj.
value time

500301 560   19.52 579   22.87 579   293.63
500302 438   14.41 438   15.71 434   230.73
500303 594   22.92 599   26.91 612   320.95
500304 501   17.27 528   20.67 513   329.72
500305 578   22.07 560   22.67 569   292.23
Average 534.2   19.24 540.8   21.77 541.4   293.45
500601 810   49.12 810   54.67 810   352.13
500602 599   30.29 611   35.24 618   305.71
500603 719   46.93 707   52.35 702   335.7
500604 737   59.58 737   68.21 737   334.5
500605 534   25.36 553   30.38 656   262.93

Average 679.8   42.26 683.6   48.17 704.6   318.19
500901 734   72.13 734   83.9 734   319.97
500902 810   71.21 810   81.97 810   277.03
500903 760   64.49 760   73.7 760   301.3
500904 798   65.57 798   75.73 798   340.4
500905 730   63.91 730   73.22 730   290.73
Average 766.4   67.46 766.4   77.7 766.4   305.89
1000301 799 128.91 869 156.61 869 1373.35
1000302 837 127.91 861 146.86 861 1220.92
1000303 843 147.27 901 164.99 943 1396.51
1000304 759 110.28 777 129.25 655 1248.52
1000305 733   93.33 746   98.79 640 1047.8
Average 794.2 121.54 830.8 139.3 793.6 1257.42
1000601 1085 263.34 1082 279.49 915 1306.96
1000602 691   93.1 697 108.97 954 1436.6
1000603 1274 283.04 1314 326.68 1385 1837.18
1000604 1029 205.89 1097 235.27 1109 1343.59
1000605 1078 224.27 1097 261.47 947 1343.59
Average 1031.4 213.93 1057.4 242.37 1062 1453.39
1000901 1379 325.55 1355 367.16 1326 1503.1
1000902 1520 496.97 1520 562.55 1480 1784.71
1000903 1469 438.73 1495 450.66 1532 1656.84
1000904 1509 387.99 1533 524.28 1533 1599.37
1000905 1484 450 1492 501.95 1502 1673.15
Average 1472.2 419.85 1479 481.32 1474.6 1643.43
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5.  Conclusions

During busy periods of department stores, work-
ers of the handling department sometimes get sup-
port from colleagues of other departments to satisfy 
the delivery requests of the customers. We for-
mulate the above business practice into the mathe-
matical model considering the capacity constraint 
of vehicle. The problem is found to be NP-hard 
and thus a heuristic algorithm of construction type 
is proposed to solve the model. To show the val-
idity of the algorithm, we solve various test prob-
lems and make the comparison study on solutions 
obtained from CPLEX and a genetic algorithm. 
The results show that the proposed heuristic shows 
satisfactory results taking far less computation time 
compared to the others. As a further study, in-
tegration of time window in customer node can be 
suggested. 
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