
Journal of the Korean Institute of Industrial Engineers
Vol. 33, No. 3, pp. 303-311, September 2007.

A Heuristic Algorithm for Multi-path Orienteering
Problem with Capacity Constraint

Hark Hwang1†․Keum Ae Park2․Yong Hui Oh3

1Department of Industrial Engineering, KAIST, Daejeon 305-701
2Samsung Card / 3Department of Industrial System Engineering, Daejin University

용량제약이 있는 다경로 오리엔티어링 문제의
해법에 관한 연구

황 학1․박금애2․오용희3*

1한국과학기술원 산업공학과 / 2삼성카드 / 3대진대학교 산업시스템공학과

This study deals with a type of vehicle routing problem faced by manager of some department stores during peak
sales periods. The problem is to find a set of traveling paths of vehicles that leave a department store and arrive
at a destination specified for each vehicle after visiting customers without violating time and capacity
constraints. The mathematical model is formulated with the objective of maximizing the sum of the rewards
collected by each vehicle. Since the problem is known to be NP-hard, a heuristic algorithm is developed to find
the solution. The performance of the algorithm is compared with the optimum solutions obtained from CPLEX
for small size problems and a priority-based Genetic Algorithm for large size problems.

Keywords: Heuristic, Multi-path Orienteering Problem, Time and Capacity Constraints

1. Introduction

In holiday seasons such as Thanksgiving and year-
end sales period with Christmas, managers of some
department stores face a tremendously large amount
of delivery requests of customers. The customers in
general want to have their purchased products deli-
vered to designated location by a given date. One
doable way for the managers is to get delivery
support from some of their employees who com-
mute by car. They are asked to deliver customers’
orders on their way home from the work place.
Now, the manager’s problem is how to assign the

delivery requests to each employee. <Figure 1>
shows an example of graphic solution for the pro-
blem with four helpful employees, A, B, C and D.
White dots in the figure denote the locations of
customers while black dots the locations of emplo-
yees’ houses. For instance, employee A is required
to arrive at his house no later than three hours
after his departure at the depot. His car is known
to have the loading capacity of 2.0m3. A sequence
of white dots connected by arrow signs forms a
path and only the customers on each path are visited
by the corresponding employee. We find that the
problem is similar to the orienteering problem (OP),
the team orienteering problem (TOP), the maximum

This work was supported by Jungseok Logistics Foundation Grant.
†Corresponding author : Professor Hark Hwang, Department of Industrial Engineering, KAIST, 373-1 Kuseong-dong, Yuseong-gu, Daejeon

305-701, Korea, Fax : +82-42-869-3110, E-mail : harkhwang@kaist.ac.kr
 Received May 2007; revision received July 2007; accepted July 2007.

304 Hark Hwang․Keum Ae Park․Yong Hui Oh

D

C

B

depot

customer

Employee A’s house
time limit = 3 hrs
loading capacity = 2.0m3

 Figure 1. An example of graphic solution of
MPOPCC

collection problem (MCP), and the multiple-tour ma-
ximum collection problem (MTMCP). Thus we name
the manager’s problem ‘the multi-path orienteering
problem with capacity constraint (MPOPCC). MPO-
PCC and the problems mentioned above are similar
in the following aspects: (1) the concept of “reward”
exists and (2) not all the customers need to be
visited. On the other hand, they differ in the sense
that the destination, time limit, and capacity of each
vehicle are not necessarily identical in MPOPCC,
while they are the same in the other problems.

Note that MPOPCC is also different from the ve-
hicle routing problem (VRP). In ordinary VRP, all
customers need to be visited with the objective of
finding a set of vehicle routes in a way to mini-
mize the total cost without exceeding vehicle capa-
cities. Thus, existing algorithms developed for VRP
cannot be directly applicable to the MPOPCC. The
orienteering problem (OP) was studied by many re-
searchers. The objective of OP is to maximize the
total collected reward within a prescribed time
limit. Laporte and Martello (1990) developed an
exact solution method using a branch and bound
method which can solve up to 90 vertices in tested
problems within 100 seconds. Leifer and Rosen-
wein (1994) proposed a procedure to obtain upper
bounds by solving three successive linear programs
tightening the LP relaxation by adding constraints
and valid inequalities. Fischetti, Gonzalez, and Toth
(1998) developed a branch-and-cut algorithm for
finding an optimal OP solution. They proposed an
effective way to use a family of cuts within the
overall branch-and-cut framework. It is known that
OP is NP-hard (Golden, Levy and Vohra, 1987)
and so many different heuristic solutions appeared
in the literature. Tsiligirides (1984) developed two

heuristics, a stochastic algorithm using a Monte Carlo
technique and a deterministic algorithm modifying
Wren and Holiday’s (1972) method for a vehicle-
scheduling problem. Hayes and Norman (1984) used
a simple functional equation of dynamic program-
ming. Golden, Levy, and Vohra (11) developed a
heuristic procedure using a ‘bang for buck’ inser-
tion and a center of gravity improvement. With the
center of gravity idea and Tsiligirides’s random-
ization concept, Golden, Wang, and Liu (1988) pro-
posed a multifaceted heuristic. Keller (1989) modi-
fied his algorithm for the multi-objective vending
problem (Keller and Goodchild, 1988) to solve the
orienteering problem. The algorithm consists of a
path-construction stage using a desirability measure
and an improvement stage. Chao, Golden and Wasil
(1996) presented a heuristic that consists of two-
point exchange, one-point movement, clean up, and
reinitialization. Tasgetiren and Smith (2000) pre-
sented a genetic algorithm to solve the OP. Liang,
Kulturel-Konak and Smith (2002) compared an ant
colony optimization method and tabu search for the
OP. Mocholi, Jaen and Canos (2005) proposed a
distributed ant colony algorithm to solve large scale
OP which approach is based on the ideas of Grid
Computing so that large instances of OP can be
solved collaboratively.

The maximum collection problem (MCP) is a spe-
cial case of OP where the start and end point are
the same. MCP is a routing problem where the ob-
jective is to maximize the sum of the rewards col-
lected at the customers visited. Kataoka and Morito
(1988) proposed a branch and bound procedure to
solve optimally. Ramesh, Yoon and Karwan (1992)
used Lagrangian relaxation along with improvement
procedures within a branch and bound method to
solve large, randomly generated test problems that
contain as many as 150 nodes. Deitch and Ladany
(2000) utilized and modified Tsiligirides’s heuristic
to solve the one-period bus touring problem which
consists of determining the optimal subset of tou-
rist sites to be visited and scenic routes to be trav-
ersed between a start and end point that both coin-
cide.

There are other problems considering multiple
paths or tours that have received relatively little at-
tention than the single path or tour. The team ori-
enteering problem (TOP) presented by Chao, Golden
and Wasil (1996) is an extended version of OP. In

A Heuristic Algorithm for Multi-path Orienteering Problem with Capacity Constraint 305

TOP, the start and end points are different and
there is more than one vehicle. The objective of
TOP is to maximize the total team rewards without
violating a specified time limit of each vehicle.
Their heuristic is based on the notion of record-
to-record improvement similar with their heuristic
algorithm for the OP except reinitialization step.
They compared their results with modified Tsiligiri-
des’s stochastic algorithm for OP.

There is another type of multi-path problem, the
multiple-tour maximum collection problem (MTMCP).
The objective of MTMCP is to maximize the total
reward collected on all of the tours without ex-
ceeding the time constraints where the start and
end nodes are the same. Butt and Cavalier (1994)
developed a heuristic solution procedure. They
found the problem from the athletic department of
a college. The campus; they had to visit during the
specified hours of a day and limited number of
days. Butt and Ryan (1999) presented an optimal
solution procedure for MTMCP. This procedure is
based on a generalized set-partitioning formulation
and uses constraint branching and tour storage
techniques to improve solution time. Their proce-
dure works well when the number of nodes visited
in any tour is relatively small. Recently, Tang and
Miller-Hooks (2005) used one of the meta-heu-
ristic, tabu search embedded in an adaptive memo-
ry procedure.

Recently, Hwang, Park and Gen (2006) proposed
a priority-based genetic algorithm (pGA) to solve a
type of MPOPCC that does not consider capacity
constraint. In this study, we develop the mathemat-
ical model of MPOPCC and then propose a heu-
ristic solution procedure. The performance of the
heuristic is compared with the solutions of various
test problems obtained from CPLEX and pGA.

2. Mathematical Formulation

We use an undirected graph  = { , } to
formulate MPOPCC with  number of vehicles in-
to the mathematical model, where  = {0, 1, 2,…,
} is a set of nodes and  ⊆  × is a set of
arcs. Each node i in N is associated with a reward
≥ .  can be partitioned into three subsets of
nodes, i.e.,   ∪∪ , where   ,

    ⋯   and     
  ⋯  . Node 0 in NS represents the depot
(or department store) from which all K vehicles
leave to visit customers. NC is a set of customer
nodes associated with delivery request while ND is
a set of destination nodes (i.e., employees’ houses)
of vehicles. Each arc in A is associated with a
symmetric and nonnegative value of tij, the time
required for the vehicle to travel between node i
and j. Euclidean distance with constant speed of
vehicles is assumed for tij. We want to find a set
of K paths, in which each path starts from node 0
and ends at a given node in ND in a way to max-
imize the total rewards collected by the vehicles.
In the solution of MPOPCC, not all the customers
need to be visited due to the time and capacity
constraints. The reward of a node in NC is award-
ed only once. In this study, we assume that cus-
tomer node can be visited by at most one vehicle
to facilitate the development of the model. As con-
straint, the total time required to visit the nodes in
each path should not exceed a specified time limit,
  +  . As another constraint, the total volume
of the items delivered in each path should not ex-
ceed a given capacity of each vehicle. Note that
for the second constraint only the amount of vol-
ume is counted while giving no consideration to
the physical configuration of each item to be
delivered.

The following notations are adopted to develop
the model:
 the number of nodes excluding the depot

node
 the number of available vehicles at the depot
 reward associated with customer node i. It

could be the monetary value of the items to
be delivered to node i or any positive real
number.

 travel time from node i to node j
  travel time from the depot node to the desti-

nation node of vehicle k
  overtime allowed for vehicle k
 volume of the items to be delivered to cus-

tomer node i
  volume capacity of vehicle k

Also, the following 0 -1 decision variables are
introduced.

   if arc(i, j) is in the path of vehicle k

306 Hark Hwang․Keum Ae Park․Yong Hui Oh

otherwise, 0
   if node i is in any path

otherwise, 0

We formulate MPOPCC as follows:
(P) max 

∈
  (1)

 subject to :


∈∪


 




   ∀∈ (2)


∈∪


 




   ∀∈ (3)


∈∪


  

∈∪




 ∀ ∈ (4)


∈
 
   ∀ (5)


∈∪

    
   ∀ (6)


∈

 
 ≤     ∀ (7)


∈

 
 ≤   ∀ (8)


∈   

 ≤     ⊂ 

＼  ≥  ∀ (9)


  ∈   ∀ ∈ (10)

The objective function (1) maximizes the total re-
wards collected from visiting modes by K vehicles.
Constraints (2) and (3) are the so-called assignment
constraints, which imply that for any customer
node at most only one vehicle can visit as well as
depart from the node. Constraint (4) is related with
the flow conservation. It implies that the vehicle
should come out of the node if it enters a custom-
er node. It also guarantees the continuity of each
path. Constraints (5) and (6) ensure that each ve-
hicle should start from the depot node and end at
the destination node, respectively. Constraint (7) is
for the time restriction and constraint (8) is for the
capacity restriction of the vehicles. Constraint (9)
is for preventing sub-tour. If the index k is addi-
tionally eliminated from (P), the mathematical for-
mulation of MPOPCC is the same as that of OP,
which implies that the complexity of MPOPCC

equals at least that of OP. One may try to solve
MPOPCC by applying an algorithm developed for
OP K times consecutively. But the approach has a
shortcoming of ignoring the sequence dependency
and may result in poor solution.

3. Heuristic Algorithm

MPOPCC is shown to have a more complicated
problem structure than OP which is known to be
NP-hard. Therefore, we develop a heuristic algo-
rithm of MPOPCC in this section. It is a con-
struction type algorithm consisting of four steps.
First, utilizing the concept of ellipse (Keller, 1989),
k number of ellipses is drawn taking the depot
node and destination node as two foci of each el-
lipse and time limit,    , as the length of ma-
jor axis. Only the customer nodes inside a given el-
lipse become candidates in constructing the corre-
sponding path. Note that any path containing nodes
outside of the corresponding ellipse inevitably vio-
lates the time limit constraint. Second, K number
of paths is first initialized by connecting the depot
node to each destination node and then augmented.
Third, we select an unrouted customer node and
insert it in the current partial paths. Finally, the se-
lection and insertion steps are repeated until the
paths are full with respect to the time limit and/or
capacity constraint.

3.1 Selection and Insertion of Node
An unrouted customer node is selected based on

the value of the priority function which is obtained
by combining three different evaluation functions.
Once the customer node with the largest priority
function value is selected, then its insertion loca-
tion is determined based on . Suppose node j is
selected and then inserted between two adjacent
nodes, nodes i and l, in the current partial path.
The additional vehicle travel time occurred by the
insertion can be expressed as      
∀ and l. Let  be the minimum among  
and will be called the minimum required insertion
time of node j. In our heuristics, the arc associated
with is selected as the insertion location. The
selection of unrouted customer node to be added to
paths is related with the question of “Does that

A Heuristic Algorithm for Multi-path Orienteering Problem with Capacity Constraint 307

Figure 3. Example of priority vectors

particular customer node provide enough rewards
considering the additional travel time and vehicle
capacity required for the visit?” In this study the
factors chosen to be criteria for the selection proc-
ess are as follow: (1) (relative amount of reward)
relative amount of reward that can be collected, (2)
(relative length of additional driving time). relative
length of additional driving time needed consider-
ing the available operation time of vehicle, and (3)
(relative amount of capacity required) relative amo-
unt of additional capacity needed considering the
capacity remained. We develop the evaluation func-
tions corresponding to the factors above and they
are

  
∈  




∈    


, ≤  ≤  (11)

  
 

 (12)

  
 

 (13)

Let   be the set of customer nodes contained
in ellipse k. Also, let    be the set of cus-
tomer nodes in the circular neighborhood centered
at node i with radius r % (see <Figure 2>). In ,
we consider not only the reward of the node i but
also those of the neighboring nodes in   .
The denominator implies the sum of the rewards in
the ellipse k and thus   measures relative size
of rewards associated with node i and its neighbor
nodes in ellipse k. The numerator of  is the
minimum insertion time of node i while the deno-
minator indicates the overtime available of employee

r

destinationcustomerdepot

Figure. 2 Graphic representation of an evaluation
function associated with reward

 at the time of evaluation. The numerator of 
is the volume of the items to be delivered to cus-
tomer i while the denominator is the remaining ca-
pacity of the vehicle k at the time of evaluation

3.2 Priority Functions
At each construction step of the paths, we eval-

uate all the unrouted customers with three evalua-
tion functions of (11), (12) and (13). Now, these
function values have to be integrated such that the
result provides a basis for the selection of the most
qualified node. Among various possible functional
forms, this study formulates the following two
(will be called ‘priority function’) and examines
the performances.

  
× 
  (14)

   ×  ×   (15)

where  ,  and  are positive constants.
Note that the priority function has a larger value

when the relative size of reward becomes bigger
while either the relative amount of additional driv-
ing time or capacity required becomes smaller. For
selection procedure, for each unrouted customer we
calculate the priority function vector, column vector
of size K, in which the ith element is the priority
function value associated with vehicle i. Note that
the value of the ith element becomes zero when
the node of unrouted customer is outside of ellipse
i. The node with the largest priority function value

③
(0.0, 0.6, 0.5)

(0.5, 0.0, 0.0)

④

⑧
 (0.0, 0.0, 0.5)

(0.0, 0.4, 0.0)

⑦

⑨ (0.6, 0.8, 0.3)

A

B

depot

C

15

308 Hark Hwang․Keum Ae Park․Yong Hui Oh

is selected and inserted between the two adjacent
nodes associated with . The procedure is re-
peated until no more insertion is possible. <Figure
3> illustrates an example of the priority vectors
with three employees, A, B, and C. In this case,
0.8 is the largest and so customer 9 is selected
and inserted in the arc associated with  in the
current path of vehicle B.

The paths of vehicles for (P) can be constructed
using the following procedure.

Priority algorithm
Step 1：Utilizing the concept of ellipse (Keller,

1989), k number of ellipses is drawn tak-
ing the depot node and destination node
as two foci of each ellipse and time limit,
 ×  , as the length of major axis.
Then K number of paths is initialized by
connecting the depot node to each desti-
nation node.

Step 2：Evaluate priority function vectors for all
unrouted customer nodes and then select a
customer node with the largest priority
function value. In case of tie, the node
with larger reward is selected. Node is se-
lected arbitrarily in case of the second tie.

Step 3：Insert it in the current partial path of the
corresponding vehicle where it has the
minimum insertion time.

Step 4：Repeat the steps 2 to 3 until it is not pos-
sible to include any unrouted customer
node to the paths.

End;

4. Numerical Experiment

We examined the effectiveness of the proposed
heuristic algorithm through solving two sets of test
problems, small size and large size ones, on P.C.
with an AMD Athlon (tm) 64 Processor (1.81GHz,
1.00GB). The programming language was Java for
the priority algorithm and C++ for pGA of Hwang,
Park and Gen (2006). CPLEX 9.0 was utilized to
find the optimal solution. Also, the following pa-
rameter values were adopted for the heuristic algo-
rithm: 2%, 4%, ···, 20% for r and 0.5, 1.0, 2.0,
3.0 for  ,  and , respectively. The pGA param-
eters were set as: crossover probability = 0.7; muta-

tion probability = 0.3; population size = 50. The maxi-
mum number of generation (maxGen) was 50 for
the small size problems and 250 for the larger size
problems. We compared the performances of the
heuristics with pGA and CPLEX for the small size
problems. For large size problems CPLEX failed to
generate an optimal solution within a reasonable
computational time and thus the heuristics was com-
pared only with pGA.

4.1 Generation of Test Problems
In small size problems the number of customers

ranges from 10 to 15 and the number of employ-
ees from 2 to 3. A total of 45 instances were de-
veloped with the following parameter values :

∙ Reward () is randomly generated using a uni-
form distribution in [5, 25] (integer)

∙ Overtime () of employee is randomly chosen
from [20, 100] (integer)

∙ The coordinates of customer node and employ-
ee node are chosen from the interval [-25, 25]
with uniform distribution (integer) with the co-
ordinates of depot node being (0, 0).

∙ Volume () of items to be delivered to cus-
tomers is chosen from uniform [10, 30] (integer)

∙ Volume capacity ( ) of each vehicle is ran-
domly generated from [50, 100] (integer)

In large size problems the number of customers
is either 50 or 100 with the number of employees
being 3, 6 or 9. A total of 30 instances were gen-
erated with the following parameters :

∙ Reward () of customer nodes, volume () of
items to be delivered to customers, overtime
() of employees, and the coordinates of cus-
tomer nodes and employee nodes are found in
the same way as in small sized problems.

∙ Volume capacity ( ) of each vehicle is ran-
domly chosen from [200, 400] (integer).

4.2 Computational Results

Let H1 and H2 denote the heuristic algorithms
with the priority function of equation (14) and
(15), respectively. <Table 1> shows the test results
of the small size problems. It lists the problem
number and performances of H1, H2, pGA and
CPLEX. The first two digits in the problem num-
ber correspond to the number of customer nodes,

A Heuristic Algorithm for Multi-path Orienteering Problem with Capacity Constraint 309

and the next two digits and last two digits imply
the number of employees and the number of repli-
cation, respectively. For instance, the problem num-
ber 100203 implies that it is the third replication
with 10 customers and 2 employees. To measure
the relative performance of the algorithms, we in-
troduce GAP which is defines as

  
  

×(%)

where   and  is the objective function value
obtained by CPLEX and other solution method, re-
spectively. For each solution method, the table shows

the objective function value, GAP, and the compu-
tation time required (sec.). Only for small size pro-
blems CPLEX could generate an optimal solution.
It can be observed that the average GAP is 11.2%
for H1, 11.4% for H2, and 2.91% for pGA while
the average running time of H1, H2, pGA and
CPLEX are 0.27 sec., 0.60 sec., 6.00 sec. and
6090.00 sec., respectively. As the problem size be-
comes bigger, the computation time required of
CPLEX increases exponentially. In many cases,
CPLEX failed to generate an optimal solution with-
in 24 computation hours, which is denoted by ‘-’
in the objective function value.

Table 1. Computational results for small size problems

Problem H1 H2 pGA CPLEX
Obj.
value

GAP
(%) time Obj.

value
GAP
(%) Time Obj.

value
GAP
(%) time Obj.

value time

100201 130 3.7 0.24 130 3.7 0.48 132 2.22 5.35 135 260
100202 112 9.68 0.14 112 9.68 0.29 112 9.68 4.78 124 28.75
100203 39 26.42 0.07 39 26.42 0.12 53 0 2.68 53 2.34
100204 108 10.74 0.12 108 10.74 0.22 121 0 2.90 121 9.83
100205 159 0 0.23 159 0 0.46 159 0 5.01 159 1.58
Average 95.4 10.11 0.16 109.6 10.11 0.314 115.4 2.53 4.14 118.4 60.5
110201 115 11.54 0.16 115 11.54 0.37 119 8.46 5.66 130 774.27
110202 182 0 0.29 182 0 0.67 182 0 6.41 182 232.61
110203 158 5.39 0.3 158 5.39 0.71 158 5.39 5.46 167 20.61
110204 114 8.8 0.22 116 7.2 0.48 120 4 5.26 125 3189.44
110205 136 7.48 0.2 136 7.48 0.44 139 5.44 5.75 147 637.36
Average 141 6.64 0.234 141.4 6.32 0.534 143.6 4.39 5.71 150.2 970.86
120201 190 0 0.31 190 0 0.65 190 0 6.54 190 1038.39
120202 104 16.8 0.21 104 16.8 0.51 125 0 5.34 125 263.01
120203 137 12.18 0.22 137 12.18 0.47 140 10.26 6.69 156 2018.31
120204 174 11.68 0.32 174 11.68 0.75 187 5.08 6.82 197 16354.5
120205 152 11.11 0.21 152 11.11 0.53 171 0 6.24 171 893.22
Average 151.4 10.35 0.254 151.4 10.35 0.582 162.6 3.1 6.33 167.8 4113.49
130201 173 0 0.36 173 0 0.87 173 0 7.56 173 46527.1
130202 105 8.7 0.16 105 8.7 0.38 115 0 4.92 115 764.953
130203 98 11.71 0.25 95 14.41 0.56 99 10.81 6.36 111 20082.3
130204 106 - 0.22 106 - 0.47 115 - 6.95 - -
130205 169 6.11 0.3 165 8.33 0.61 177 1.67 6.60 180 1987.3
Average 130.2 6.63 0.26 125.8 7.86 0.58 136.8 3.11 6.48 144.75 17340.41
140201 131 - 0.28 132 - 0.65 151 - 7.15 - -
140202 146 - 0.41 143 - 0.97 151 - 8.49 - -
140203 165 - 0.33 165 - 0.83 158 - 7.7 - -
140204 128 - 0.34 130 - 0.79 141 - 7.54 - -
140205 119 13.14 0.22 119 13.14 0.48 136 0.73 6.39 137 22615.3

310 Hark Hwang․Keum Ae Park․Yong Hui Oh

Average 131.8 - 0.32 131.8 - 0.74 147.4 - 7.47 - -
150201 85 - 0.16 85 - 0.32 143 - 5.78 - -
150202 135 - 0.25 135 - 0.6 189 - 8.30 - -
150203 129 - 0.28 129 - 0.59 133 - 7.11 - -
150204 213 - 0.54 214 - 1.21 223 - 8.78 - -
150205 173 - 0.4 176 - 0.87 176 - 8.14 - -
Average 147 - 0.32 147.8 - 0.72 172.8 - 7.62 - -
100301 122 31.84 0.23 122 31.84 0.46 179 0 5.09 179 150.33
100302 116 12.78 0.23 116 12.78 0.5 133 0 4.46 133 1235.28
100303 150 11.76 0.3 150 11.76 0.62 170 0 4.89 170 85.64
100304 98 15.52 0.18 98 15.52 0.4 107 7.76 4.22 116 134.8
100305 148 8.64 0.23 148 8.64 0.52 157 3.09 5.67 162 14992
Average 126.8 16.11 0.23 126.8 16.11 0.5 149.2 2.17 4.87 152 3319.61
110301 81 33.61 0.12 81 33.61 0.26 122 0 4.82 122 1231.07
110302 123 13.38 0.24 124 12.68 0.5 142 0 5.34 142 4703.6
110303 203 0 0.39 203 0 0.89 203 0 4.73 203 328.81
110304 167 2.91 0.31 167 2.91 0.75 172 0 5.88 172 28.47
110305 94 30.37 0.16 91 32.59 0.39 118 12.59 5.43 135 3452.08
Average 133.6 16.05 0.24 133.2 16.36 0.56 151.4 2.52 5.24 154.8 1948.81
120301 164 - 0.44 164 - 0.97 164 - 6.38 - -
120302 165 - 0.34 165 - 0.81 171 - 6.58 - -
120303 178 - 0.49 178 - 1.09 178 - 5.02 - -
120304 183 - 0.41 183 - 0.83 190 - 6.84 - -
120305 152 - 0.47 152 - 1.05 152 - 5.42 - -
Average 168.4 - 0.43 168.4 - 0.95 171 - 6.05 - -

<Table 2> shows the computational results for
large size problems. Due to the unavailability of
optimal solution, H1 and H2 are compared only
with pGA. We observe that the proposed heuristics
generate satisfactory results. Generally, H2 outper-
forms H1 and in several cases H2 gives better re-
sults than pGA.

Table 2. Computational results for large size
problems

Problem
H1 H2 pGA

Obj.
value time Obj.

value time Obj.
value time

500301 560 19.52 579 22.87 579 293.63
500302 438 14.41 438 15.71 434 230.73
500303 594 22.92 599 26.91 612 320.95
500304 501 17.27 528 20.67 513 329.72
500305 578 22.07 560 22.67 569 292.23
Average 534.2 19.24 540.8 21.77 541.4 293.45
500601 810 49.12 810 54.67 810 352.13
500602 599 30.29 611 35.24 618 305.71
500603 719 46.93 707 52.35 702 335.7
500604 737 59.58 737 68.21 737 334.5
500605 534 25.36 553 30.38 656 262.93

Average 679.8 42.26 683.6 48.17 704.6 318.19
500901 734 72.13 734 83.9 734 319.97
500902 810 71.21 810 81.97 810 277.03
500903 760 64.49 760 73.7 760 301.3
500904 798 65.57 798 75.73 798 340.4
500905 730 63.91 730 73.22 730 290.73
Average 766.4 67.46 766.4 77.7 766.4 305.89
1000301 799 128.91 869 156.61 869 1373.35
1000302 837 127.91 861 146.86 861 1220.92
1000303 843 147.27 901 164.99 943 1396.51
1000304 759 110.28 777 129.25 655 1248.52
1000305 733 93.33 746 98.79 640 1047.8
Average 794.2 121.54 830.8 139.3 793.6 1257.42
1000601 1085 263.34 1082 279.49 915 1306.96
1000602 691 93.1 697 108.97 954 1436.6
1000603 1274 283.04 1314 326.68 1385 1837.18
1000604 1029 205.89 1097 235.27 1109 1343.59
1000605 1078 224.27 1097 261.47 947 1343.59
Average 1031.4 213.93 1057.4 242.37 1062 1453.39
1000901 1379 325.55 1355 367.16 1326 1503.1
1000902 1520 496.97 1520 562.55 1480 1784.71
1000903 1469 438.73 1495 450.66 1532 1656.84
1000904 1509 387.99 1533 524.28 1533 1599.37
1000905 1484 450 1492 501.95 1502 1673.15
Average 1472.2 419.85 1479 481.32 1474.6 1643.43

A Heuristic Algorithm for Multi-path Orienteering Problem with Capacity Constraint 311

5. Conclusions

During busy periods of department stores, work-
ers of the handling department sometimes get sup-
port from colleagues of other departments to satisfy
the delivery requests of the customers. We for-
mulate the above business practice into the mathe-
matical model considering the capacity constraint
of vehicle. The problem is found to be NP-hard
and thus a heuristic algorithm of construction type
is proposed to solve the model. To show the val-
idity of the algorithm, we solve various test prob-
lems and make the comparison study on solutions
obtained from CPLEX and a genetic algorithm.
The results show that the proposed heuristic shows
satisfactory results taking far less computation time
compared to the others. As a further study, in-
tegration of time window in customer node can be
suggested.

References

Butt, S. E. and Cavalier, T. M. (1994), A heuristic for the
multiple tour maximum collection problem, Computers
and Operations Research, 21, 101-111.

Butt, S. E. and Ryan, D. M. (1999), An optimal solution
procedure for the multiple tour maximum collection
problem using column generation, Computers and Oper-
ations Research, 26, 427-441.

Chao, I., Golden, B. L., and Wasil, E. A. (1996), The
team orienteering problem, European Journal of Opera-
tional Research, 88, 464-474.

Chao, I., Golden, B. L., and Wasil, E. A. (1996), A fast
and effective heuristic for the orienteering problem,
European Journal of Operational Research, 88, 475-489.

Deitch, R. and Ladany, S. P. (2000), The one-period bus
touring problem: Solved by an effective heuristic for the
orienteering tour problem and improvement algorithm,
European Journal of Operational Research, 127, 69-77.

Fischetti, M., Gonzalez, J. J. S., and Toth, P. (1998), Solving
the orienteering problem through branch-and-cut, INFORMS
Journal on Computing, 10, 133-148.

Golden, B. L., Levy, L., and Vohra, R. (1987), The orienteer-
ing problem, Naval Research Logistics, 34, 307-318.

Golden, B. L., Wang, Q., and Liu, L. (1988), A multifac-
eted heuristic for the orienteering problem, Naval Res-
earch Logistics, 35, 359-366.

Hayes, M. and Norman, J. M. (1984), Dynamic program-
ming in orienteering: Route choice and the siting of
controls, Journal of the Operational Research Society,
35, 791-796.

Hwang, H., Park, G. A., and Gen, M. (2006), A priority
based genetic algorithm for a variant of orienteering
problem, International Journal of Logistics and SCM
Systems, 1(1), 34-40

Kataoka, S. and Morito, S. (1988), An algorithm for single
constraint maximum collection problem, Journal of
Operations Research Society of Japan, 31, 515-530.

Keller, C. P. (1989), Algorithms to solve the orienteering
problem : A comparison, European Journal of Operational
Research, 41, 224-231.

Keller, C. P. and Goodchild, M. (1988), The multi-ob-
jective vending problem : A generalization of the travel-
ing salesman problem, Environment and Planning B: Plan-
ning and Design, 15, 447-460.

Laporte, G. and Martello, S. (1990), The selective traveling
salesman problem, Discrete Applied Mathematics, 26,
193-207.

Leifer, A. C. and Rosenwein, M. B. (1994), Strong linear
programming relaxations for the orienteering problem,
European Journal of Operational Research, 73, 517-523.

Liang, Y. C., Kulturel-Konak, S., and Smith, A. E. (2002)
Meta heuristic for the orienteering problem, Proceedings
of the 2002 Congress on Evolutionary Computation,
384-389.

Mocholi, J. A., Jaen, J., and Canos, J. H. (2005), A grid
ant colony algorithm for the orienteering problem, The
2005 IEEE Congress on Evolutionary Computation, 1,
942-949.

Ramesh, R., Yoon, Y., and Karwan, M. H. (1992), An op-
timal algorithm for the orienteering tour problem, ORSA
Journal on Computing, 4, 155- 165.

Tang, H. and Miller-Hooks, E. (2005), A Tabu search heu-
ristic for the team orienteering problem, Computers and
Operations Research, 32(6), 1379- 1407.

Tasgetiren, M. F. and Smith, A. E. (2000), A genetic algo-
rithm for the orienteering problem, Proceedings of the
2000 Congress on Evolutionary Computation, 2, 910-
915.

Tsilligirides, T. (1984), Heuristic methods applied to orient-
eering, Journal of the Operational Research Society, 35,
797-809.

Wren, A. and Holiday, A. (1972), Computer scheduling of
vehicles from one or more depots to a number of deliv-
ery points, Operational Research Quarterly, 23, 333-344.

