DOI QR코드

DOI QR Code

High Level of Soluble Expression in Escherichia coli and Characterisation of the Cloned Bacillus thuringiensis Cry4Ba Domain III Fragment

  • Chayaratanasin, Poramed (Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University) ;
  • Moonsom, Seangdeun (Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University) ;
  • Sakdee, Somsri (Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University) ;
  • Chaisri, Urai (Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University) ;
  • Katzenmeier, Gerd (Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University) ;
  • Angsuthanasombat, Chanan (Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University)
  • Published : 2007.01.31

Abstract

Similar to the other known structures of Bacillus thuringiensis Cry $\delta$-endotoxins, the crystal structure of the 65-kDa activated Cry4Ba toxin comprises three domains which are, from the N- to C-terminus, a bundle of $\alpha$-helices, a three-$\beta$-sheet domain, and a $\beta$-sandwich. To investigate the properties of the C-terminal domain III in isolation from the rest of the toxin, the cloned Cry4Ba-domain III was over-expressed as a 21-kDa soluble protein in Escherichia coli, which cross-reacted with anti-Cry4Ba domain III monoclonal antibody. A highly-purified domain III was obtained in a monomeric form by ion-exchange and size-exclusion FPLC. Circular dichroism spectroscopy indicated that the isolated domain III fragment distinctly exists as a $\beta$-sheet structure, corresponding to the domain III structure embodied in the Cry4Ba crystal structure. In vitro binding analysis via immuno-histochemical assay revealed that the Cry4Ba-domain III protein was able to bind to the apical microvilli of the susceptible Stegomyia aegypti larval midguts, albeit at lower-binding activity when compared with the full-length active toxin. These results demonstrate for the first time that the C-terminal domain III of the Cry4Ba mosquito-larvicidal protein, which can be isolated as a native folded monomer, conceivably participates in toxin-receptor recognition.

Keywords

References

  1. Angsuthanasombat, C., Chungjatupornchai, W., Kertbundit, S., Luxananil, P., Settasatian, C., Wilairat, P. and Panyim, S. (1987) Cloning and expression of 130-kd mosquito-larvicidal $\delta$-endotoxin gene of Bacillus thuringiensis var. israelensis in Escherichia coli. Mol. Gen. Genet. 208, 384-389. https://doi.org/10.1007/BF00328128
  2. Angsuthanasombat, C., Uawithya, P., Leetachewa, S., Pornwiroon, W., Ounjai, P., Kerdcharoen, T., Katzenmeier, G. R. and Panyim, S. (2004) Bacillus thuringiensis Cry4A and Cry4B mosquitolarvicidal proteins: homology-based 3D model and implications for toxin activity. J. Biochem. Mol. Biol. 37, 304-313. https://doi.org/10.5483/BMBRep.2004.37.3.304
  3. Boonserm, P., Davis, P., Ellar, D. J. and Li, J. (2005) Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J. Mol. Biol. 348, 363-382. https://doi.org/10.1016/j.jmb.2005.02.013
  4. Boonserm, P., Mo, M., Angsuthanasombat, C. and Lescar, J. (2006) Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution. J. Bacteriol. 188, 3391-3401. https://doi.org/10.1128/JB.188.9.3391-3401.2006
  5. Boonserm, P., Pornwiroon, W., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2004) Optimised expression in Escherichia coli and purification of the functional form of the Bacillus thuringiensis Cry4Aa $\delta$-endotoxin. Protein Expr. Purif. 35, 397-403. https://doi.org/10.1016/j.pep.2004.02.016
  6. Buttcher, V., Ruhlmann, A. and Cramer, F. (1990) Improved single-stranded DNA producing expression vectors for protein manipulation in Escherichia coli. Nucleic Acids Res. 18, 1075. https://doi.org/10.1093/nar/18.4.1075
  7. De Maagd, R. A., Bravo, A., Berry, C., Crickmore, N. and Schnepf, H. E. (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu. Rev. Genet. 37, 409-433. https://doi.org/10.1146/annurev.genet.37.110801.143042
  8. De Maagd, R. A., Kwa, M. S., van der, K. H., Yamamoto, T., Schipper, B., Vlak, J. M., Stiekema, W. J. and Bosch, D. (1996) Domain III substitution in Bacillus thuringiensis deltaendotoxin CryIA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl. Environ Microbiol. 62, 1537-1543.
  9. De Maagd, R. A., Weemen-Hendriks, M., Stiekema, W. and Bosch, D. (2000) Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids. Appl. Environ. Microbiol. 66, 1559-1563. https://doi.org/10.1128/AEM.66.4.1559-1563.2000
  10. Fernandez, L. E., Perez, C., Segovia, L., Rodriguez, M. H., Gill, S. S., Bravo, A. and Soberon, M. (2005) Cry11Aa toxin from Bacillus thuringiensis binds its receptor in Aedes aegypti mosquito larvae through loop $\alpha$-8 of domain II. FEBS Lett. 579, 3508-3514. https://doi.org/10.1016/j.febslet.2005.05.032
  11. Flores, H., Soberon, X., Sanchez, J. and Bravo, A. (1997) Isolated domain II and III from the Bacillus thuringiensis Cry1Ab $\delta$- endotoxin binds to lepidopteran midgut membranes. FEBS Lett. 414, 313-318. https://doi.org/10.1016/S0014-5793(97)01015-6
  12. Galitsky, N., Cody, V., Wojtczak, A., Ghosh, D., Luft, J. R., Pangborn, W. and English, L. (2001) Structure of the insecticidal bacterial $\delta$-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr. D. Biol. Crystallogr. 57, 1101-1109. https://doi.org/10.1107/S0907444901008186
  13. Gerber, D. and Shai, Y. (2000) Insertion and organization within membranes of the$\delta$-endotoxin pore-forming domain, helix 4-loop-helix 5, and inhibition of its activity by a mutant helix 4 peptide. J. Biol. Chem. 275, 23602-23607. https://doi.org/10.1074/jbc.M002596200
  14. Grochulski, P., Masson, L., Borisova, S., Pusztai-Carey, M., Schwartz, J. L., Brousseau, R. and Cygler, M. (1995) Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J. Mol. Biol. 254, 447-464. https://doi.org/10.1006/jmbi.1995.0630
  15. Jenkins, J. L., Lee, M. K., Sangadala, S., Adang, M. J. and Dean, D. H. (1999) Binding of Bacillus thuringiensis Cry1Ac toxin to Manduca sexta aminopeptidase-N receptor is not directly related to toxicity. FEBS Lett. 462, 373-376. https://doi.org/10.1016/S0014-5793(99)01559-8
  16. Jenkins, J. L., Lee, M. K., Valaitis, A. P., Curtiss, A. and Dean, D. H. (2000) Bivalent sequential binding model of a Bacillus thuringiensis toxin to gypsy moth aminopeptidase N receptor. J. Biol. Chem. 275, 14423-14431. https://doi.org/10.1074/jbc.275.19.14423
  17. Kanintronkul, Y., Sramala, I., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2003) Specific mutations within the $\alpha$4-$\alpha$5 loop of the Bacillus thuringiensis Cry4B toxin reveal a crucial role for Asn-166 and Tyr-170. Mol. Biotechnol. 24, 11-20. https://doi.org/10.1385/MB:24:1:11
  18. Knowles, B. H. (1994) Mechanism of action of Bacillus thuringiensis insecticidal $\delta$-endotoxins. Adv. Insect Physiol. 24, 275-308. https://doi.org/10.1016/S0065-2806(08)60085-5
  19. Leetachewa, S., Katzenmeier, G. and Angsuthanasombat, C. (2006) Novel preparation and characterization of the $\alpha$4-loop-$\alpha$5 membrane-perturbing peptide from the Bacillus thuringiensis Cry4Ba $\delta$-endotoxin. J. Biochem. Mol. Biol. 39, 270-277. https://doi.org/10.5483/BMBRep.2006.39.3.270
  20. Li, J. D., Carroll, J. and Ellar, D. J. (1991) Crystal structure of insecticidal $\delta$-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature 353, 815-821. https://doi.org/10.1038/353815a0
  21. Likitvivatanavong, S., Katzenmeier, G. and Angsuthanasombat, C. (2006) Asn183 in $\alpha$5 is essential for oligomerisation and toxicity of the Bacillus thuringiensis Cry4Ba toxin. Arch. Biochem. Biophys. 445, 46-55. https://doi.org/10.1016/j.abb.2005.11.007
  22. Masson, L., Tabashnik, B. E., Mazza, A., Prefontaine, G., Potvin, L., Brousseau, R. and Schwartz, J. L. (2002) Mutagenic analysis of a conserved region of domain III in the Cry1Ac toxin of Bacillus thuringiensis. Appl. Environ. Microbiol. 68, 194-200. https://doi.org/10.1128/AEM.68.1.194-200.2002
  23. Moonsom, S. (2004) Expression and characterisation of the cloned domain II and II-III fragments of the Bacillus thuringiensis Cry4Ba larvicidal protein. M.Sc. thesis. Mahidol University, Thailand.
  24. Morse, R. J., Yamamoto, T. and Stroud, R. M. (2001) Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9, 409-417. https://doi.org/10.1016/S0969-2126(01)00601-3
  25. Nishimoto, T., Yoshisue, H., Ihara, K., Sakai, H. and Komano, T. (1994) Functional analysis of block 5, one of the highly conserved amino acid sequences in the 130-kDa CryIVA protein produced by Bacillus thuringiensis subsp. israelensis. FEBS Lett. 348, 249-254. https://doi.org/10.1016/0014-5793(94)00604-0
  26. Pornwiroon, W., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2004) Aromaticity of Tyr-202 in the $\alpha$4-$\alpha$5 loop is essential for toxicity of the Bacillus thuringiensis Cry4A toxin. J. Biochem. Mol. Biol. 37, 292-297. https://doi.org/10.5483/BMBRep.2004.37.3.292
  27. Puntheeranurak, T., Uawithya, P., Potvin, L., Angsuthanasombat, C. and Schwartz, J. L. (2004) Ion channels formed in planar lipid bilayers by the dipteran-specific Cry4B Bacillus thuringiensis toxin and its $\alpha$1-$\alpha$5 fragment. Mol. Membr. Biol. 21, 67-74. https://doi.org/10.1080/09687680310001625792
  28. Ravoahangimalala, O. and Charles, J. F. (1995) In vitro binding of Bacillus thuringiensis var. israelensis individual toxins to midgut cells of Anopheles gambiae larvae (Diptera: Culicidae). FEBS Lett. 362, 111-115. https://doi.org/10.1016/0014-5793(95)00220-4
  29. Ruiz, L. M., Segura, C., Trujillo, J. and Orduz, S. (2004) In vivo binding of the Cry11Bb toxin of Bacillus thuringiensis subsp. medellin to the midgut of mosquito larvae (Diptera: Culicidae). Mem. Inst. Oswaldo Cruz 99, 73-79. https://doi.org/10.1590/S0074-02762004000100013
  30. Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R. and Dean, D. H. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775-806.
  31. Sramala, I., Uawithya, P., Chanama, U., Leetachewa, S., Krittanai, C., Katzenmeier, G., Panyim S. and Angsuthanasombat, C. (2000) Single proline substitutions of selected helices of the Bacillus thuringiensis Cry4B toxin effect inclusion solubility and larvicidal activity. J. Biochem. Mol. Biol. Biophys. 4, 187-193.
  32. Tapaneeyakorn, S., Pornwiroon, W., Katzenmeier, G. and Angsuthanasombat, C. (2005) Structural requirements of the unique disulphide bond and the proline-rich motif within the $\alpha$4-$\alpha$5 loop for larvicidal activity of the Bacillus thuringiensis Cry4Aa $\delta$-endotoxin. Biochem. Biophys. Res. Commun. 330, 519-525. https://doi.org/10.1016/j.bbrc.2005.03.006
  33. Tuntitippawan, T., Boonserm, P., Katzenmeier, G. and Angsuthanasombat, C. (2005) Targeted mutagenesis of loop residues in the receptor-binding domain of the Bacillus thuringiensis Cry4Ba toxin affects larvicidal activity. FEMS Microbiol. Lett. 242, 325-332. https://doi.org/10.1016/j.femsle.2004.11.026
  34. Vazquez-Padron, R. I., Martinez-Gil, A. F., Ayra-Pardo, C., Gonzalez-Cabrera, J., Prieto-Samsonov, D. L. and de la Riva, G. A. (1998) Biochemical characterization of the third domain from Bacillus thuringiensis Cry1A toxins. Biochem. Mol. Biol. Int. 45, 1011-1020.
  35. Walters, F. S., Slatin, S. L., Kulesza, C. A. and English, L. H. (1993) Ion channel activity of N-terminal fragments from CryIA(c) delta-endotoxin. Biochem. Biophys. Res. Commun. 196, 921-926. https://doi.org/10.1006/bbrc.1993.2337
  36. Whalon, M. E. and Wingerd, B. A. (2003) Bt: mode of action and use. Arch. Insect Biochem. Physiol. 54, 200-211. https://doi.org/10.1002/arch.10117

Cited by

  1. Bacillus thuringiensis Cry4Ba toxin employs two receptor-binding loops for synergistic interactions with Cyt2Aa2 vol.435, pp.2, 2013, https://doi.org/10.1016/j.bbrc.2013.04.078
  2. Functional characterizations of residues Arg-158 and Tyr-170 of the mosquito-larvicidal Bacillus thuringiensis Cry4Ba vol.47, pp.10, 2014, https://doi.org/10.5483/BMBRep.2014.47.10.192
  3. Functional characterization of truncated fragments of Bacillus sphaericus binary toxin BinB vol.106, pp.2, 2011, https://doi.org/10.1016/j.jip.2010.10.004
  4. Loop residues of the receptor binding domain ofBacillus thuringiensisCry11Ba toxin are important for mosquitocidal activity vol.583, pp.12, 2009, https://doi.org/10.1016/j.febslet.2009.05.020
  5. Functional assembly of 260-kDa oligomers required for mosquito-larvicidal activity of the Bacillus thuringiensis Cry4Ba toxin vol.68, 2015, https://doi.org/10.1016/j.peptides.2014.11.013
  6. Amino acid residues in the N-terminal region of the BinB subunit of Lysinibacillus sphaericus binary toxin play a critical role during receptor binding and membrane insertion vol.114, pp.1, 2013, https://doi.org/10.1016/j.jip.2013.05.008
  7. Variations in the mosquito larvicidal activities of toxins fromBacillus thuringiensisssp.israelensis vol.10, pp.9, 2008, https://doi.org/10.1111/j.1462-2920.2008.01696.x
  8. Amino acids at N- and C-termini are required for the efficient production and folding of a cytolytic γ-endotoxin from Bacillus thuringiensis vol.41, pp.11, 2008, https://doi.org/10.5483/BMBRep.2008.41.11.820
  9. Bacillus thuringiensis subsp. israelensis and Its Dipteran-Specific Toxins vol.6, pp.4, 2014, https://doi.org/10.3390/toxins6041222
  10. Single-reversal charge in the β10-β11 receptor-binding loop of Bacillus thuringiensis Cry4Aa and Cry4Ba toxins reflects their different toxicity against Culex spp. larvae vol.450, pp.2, 2014, https://doi.org/10.1016/j.bbrc.2014.06.090
  11. The C-Terminal Domain of the Bacillus thuringiensis Cry4Ba Mosquito-Specific Toxin Serves as a Potential Membrane Anchor vol.11, pp.2, 2019, https://doi.org/10.3390/toxins11020062