DOI QR코드

DOI QR Code

Preparation and Characterization of Paclitaxel-loaded PLGA Nanoparticles Coated with Cationic SM5-1 Single-chain Antibody

  • Kou, Geng (International Joint Cancer Institute and College of Pharmacy, Second Military Medical University) ;
  • Gao, Jie (International Joint Cancer Institute and College of Pharmacy, Second Military Medical University) ;
  • Wang, Hao (International Joint Cancer Institute and College of Pharmacy, Second Military Medical University) ;
  • Chen, Huaiwen (International Joint Cancer Institute and College of Pharmacy, Second Military Medical University) ;
  • Li, Bohua (International Joint Cancer Institute and College of Pharmacy, Second Military Medical University) ;
  • Zhang, Dapeng (International Joint Cancer Institute and College of Pharmacy, Second Military Medical University) ;
  • Wang, Shuhui (International Joint Cancer Institute and College of Pharmacy, Second Military Medical University) ;
  • Hou, Sheng (International Joint Cancer Institute and College of Pharmacy, Second Military Medical University) ;
  • Qian, Weizhu (International Joint Cancer Institute and College of Pharmacy, Second Military Medical University) ;
  • Dai, Jianxin (International Joint Cancer Institute and College of Pharmacy, Second Military Medical University) ;
  • Zhong, Yanqiang (International Joint Cancer Institute and College of Pharmacy, Second Military Medical University) ;
  • Guo, Yajun (International Joint Cancer Institute and College of Pharmacy, Second Military Medical University)
  • Published : 2007.09.30

Abstract

The purpose of this study was to develop paclitaxel-loaded poly(lactide-co-glycolide) (PLGA) nanoparticles coated with cationic SM5-1 single-chain antibody (scFv) containing a polylysine (SMFv-polylys). SM5-1 scFv (SMFv) is derived from SM5-1 monoclonal antibody, which binds to a 230 kDa membrane protein specifically expressed on melanoma, hepatocellular carcinoma and breast cancer cells. SMFv-polylys was expressed in Escherichia coli and purified by cation-exchange chromatography. Purified SMFv-polylys was fixed to paclitaxel-loaded PLGA nanoparticles to form paclitaxel-loaded PLGA nanoparticles coated with SMFv-polylys (Ptx-NP-S). Ptx-NP-S was shown to retain the specific antigen-binding affinity of SMFv-polylys to SM5-1 binding protein-positive Ch-hep-3 cells. Finally, the cytotoxicity of Ptx-NP-S was evaluated by a non-radioactive cell proliferation assay. It was demonstrated that Ptx-NP-S had significantly enhanced in vitro cytotoxicity against Ch-hep-3 cells as compared with non-targeted paclitaxel-loaded PLGA nanoparticles. In conclusion, our results suggest that cationic SMFv-polylys has been successfully generated and may be used as targeted ligand for preparing cancer-targeted nanoparticles.

Keywords

References

  1. Allen, T. M. (2002) Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2, 750-763. https://doi.org/10.1038/nrc903
  2. Ataman-Onal, Y., Munier, S., Ganee, A., Terrat, C., Durand, P. Y., Battail, N., Martinon, F., Le, G. R., Charles, M. H., Delair, T. and Verrier, B. (2006) Surfactant-free anionic PLA nanoparticles coated with HIV-1 p24 protein induced enhanced cellular and humeral immune responses in various animal models. J. Control. Release 112, 175-185. https://doi.org/10.1016/j.jconrel.2006.02.006
  3. Caetano, B., Drobecq, H. and Soncin, F. (2006) Expression and purification of recombinant vascular endothelial-statin. Protein Expr. Purif. 46, 136-142. https://doi.org/10.1016/j.pep.2005.07.029
  4. Carter, P. (2001) Improving the efficacy of antibody-based cancer therapies. Nat. Rev. Cancer 1, 118-129. https://doi.org/10.1038/35101072
  5. Chaska, J., Kazak, J., Uqozzoli, M., O'hagan, D. T. and Singh, M. (2005) An investigation of the factors controlling the adsorption of protein antigens to anionic PLG microparticles. J. Pham. Sci. 94, 2510-2519. https://doi.org/10.1002/jps.20472
  6. Chavanpatil, M. D., Patil, Y. and Panyam, J. (2006) Susceptibility of nanoparticle-encapsulated paclitaxel to P-glycoprotein-mediated drug efflux. Int. J. Pharm. 320, 150-156. https://doi.org/10.1016/j.ijpharm.2006.03.045
  7. Chayaratanasin, P., Moonsom, S., Sakdee, S., Chaisri U., Katzenmeier, G. and Angsuthanasombat, C. (2007) High level of soluble expression in Escherichia coli and characterisation of the cloned Bacillus thuringiensis cry4ba domain III fragment. J. Biochem. Mol. Biol. 40, 58-64. https://doi.org/10.5483/BMBRep.2007.40.1.058
  8. Farokhzad, O. C., Cheng, J., Teply, B. A., Sherifi, I., Jon, S., Kantoff, P. W., Richie, J. P. and Langer, R. (2006) Targeted anoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA 103, 6315-6320. https://doi.org/10.1073/pnas.0601755103
  9. Fonseca, C., Simoes, S. and Gaspar, R. (2002) Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release 83, 273-286. https://doi.org/10.1016/S0168-3659(02)00212-2
  10. Kazzaz, J., Singh, M., Ugozzoli, M., Chesko, J., Soenawan, E. and O'hagan, D. T. (2006) Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. J. Control. Release 110, 566-573. https://doi.org/10.1016/j.jconrel.2005.10.010
  11. Li, B., Wang, H., Zhang, D., Qian, W., Hou, S., Shi, S., Zhao, L., Kou, G., Cao, Z., Dai, J. and Guo, Y. (2007) Construction and characterization of a high-affinity humanized SM5-1 monoclonal antibody. Biochem. Biophys. Res. Commun. 357, 951-956. https://doi.org/10.1016/j.bbrc.2007.04.039
  12. Lv, H., Zhang, S., Wang, B., Cui, S. and Yan, J. (2006) Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 114, 100-109. https://doi.org/10.1016/j.jconrel.2006.04.014
  13. Mitra, A., Nan, A., Line, B. R. and Ghandehari, H. (2006) Nanocarriers for nuclear imaging and radiotherapy of cancer. Curr. Pharm. Des. 12, 4729-4749. https://doi.org/10.2174/138161206779026317
  14. Moshfeghi, A. A. and Peyman, G. A. (2005) Micro- and nanoparticulates. Adv. Drug Deli. Rev. 57, 2047-2052. https://doi.org/10.1016/j.addr.2005.09.006
  15. Mo, Y. and Lim, L. Y. (2005) Preparation and in vitro anticancer activity of wheat germ agglutinin (WGA)-conjugated PLGA nanoparticles loaded with paclitaxel and isopropyl myristate. J. Control. Release 107, 30-42. https://doi.org/10.1016/j.jconrel.2004.06.024
  16. Nichkova, M., Dosev, D., Perron, R., Gee, S. J., Hammock, B. D. and Kennedy, I. M. (2006) $Eu^{3+}-doped$ Gd2O3 nanoparticles as reporters for optical detection and visualization of antibodies patterned by microcontact printing. Anal. Bioanal. Chem. 384, 631-637. https://doi.org/10.1007/s00216-005-0246-8
  17. Nobs, L., Buchegger, F., Gurny, R. and Allemann, E. (2004) Current methods for attaching targeting ligands to liposomes and nanoparticles. J. Pham. Sci. 93, 1980-1992. https://doi.org/10.1002/jps.20098
  18. Panyam, J. and Labhasetwar, V. (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Del. Rev. 55, 329-347. https://doi.org/10.1016/S0169-409X(02)00228-4
  19. Pashkovskaya, A. A., Lukashev, E. P., Antonov, P. E., Finogenova, O. A., Ermakov, Y. A., Melik-Nubarov, N. S. and Antonenko, Y. N. (2006) Grafting of polylysine with polyethylenoxide prevents demixing of O-pyromellitylgramicidin in lipid membranes. Biochim. Biophys. Acta 1758, 1685-1695. https://doi.org/10.1016/j.bbamem.2006.06.011
  20. Powell, T. and Yoon, J. Y. (2006) Fluorescent biorecognition of gold nanoparticle-IgG conjugates self-assembled on E-beam patterns. Biotechnol. Prog. 22, 106-110. https://doi.org/10.1021/bp0501726
  21. Reinke, S., Koniger, P., Herberth, G., Audring, H., Wang, H., Ma, J., Guo, Y., Sterry, W. and Trefzer, U. (2005) Differential expression of MART-1, tyrosinase, and SM5-1 in primary and metastasis melanoma. Am. J. Dermatopathol. 27, 401-406. https://doi.org/10.1097/01.dad.0000180076.17932.ee
  22. Sah, H. (1997) A new strategy to determine the actual protein content of poly(lactide-co-glycolide) microspheres. J. Pharm. Sci. 86, 1315-1318. https://doi.org/10.1021/js960363q
  23. Song, S. C., Xue, J. Y., Fan, K. X., Kou, G., Zhou, Q., Wang, H. and Guo, Y. J. (2005) Preparation and characterization of fusion protein truncated Pseudomonas Exotoxin A (PE38KDEL) in Escherichia coli. Protein Expr. Purif. 44, 52-57. https://doi.org/10.1016/j.pep.2005.04.004
  24. Sun, H. K., Ji, H. J., Ki, W. C. and Tae, G. P. (2005) Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate. Langmuir 21, 8852-8857. https://doi.org/10.1021/la0502084
  25. Su, Y. C., Lim, K. P. and Nathan, S. (2003) Bacterial expression of the scFv fragment of a recombinant antibody specific for Burkholderia pseudomallei exotoxin. J. Biochem. Mol. Biol. 36, 493-498. https://doi.org/10.5483/BMBRep.2003.36.5.493
  26. Treerattrakool, S., Udomkit, A. and Panyim, S. (2006) Anti-CHH antibody causes impaired hyperglycemia in Penaeus monodon. J. Biochem. Mol. Biol. 39, 371-376 https://doi.org/10.5483/BMBRep.2006.39.4.371
  27. Trefzer, U., Chen, Y., Herberth, G., Hofmann, M. A., Kiecker, F., Guo, Y. and Sterry, W. (2006) The monoclonal antibody SM5-1 recognizes a fibronectin variant which is widely expressed in melanoma. BMC. Cancer 11, 6-8.
  28. Trefzer, U., Rietz, N., Chen, Y., Audring, H., Herberth, G., Siegel, P., Reinke, S., Koniger, P., Wu, S., Ma, J., Liu, Y., Wang, H., Sterry, W. and Guo, Y. (2000) SM5-1: a new monoclonal antibody which is highly sensitive and specific for melanocytic lesions. Arch. Der. Res. 292, 583-589. https://doi.org/10.1007/s004030000186
  29. Wang, H., Song, S., Kou, G., Li, B., Zhang, D., Hou, S., Qian, W., Dai, J., Tian, L., Zhao, J. and Guo, Y. (2007) Treatment of hepatocellular carcinoma in a mouse xenograft model with an immunotoxin which is engineered to eliminate vascular leak syndrome. Cancer Immunol. Immunother. doi:10.1007/s00262-007-0321-4.
  30. Xiong, H., Ran, Y., Xing, J., Yang, X., Li, Y. and Chen, Z. (2005) Expression vectors for human-mouse chimeric antibodies. J. Biochem. Mol. Biol. 38, 414-419. https://doi.org/10.5483/BMBRep.2005.38.4.414
  31. Zhao, J., Wang, H., Wei, L., Habib, N. A., Lu, X., Wu, M. and Guo, Y. (2001) The cytotoxic effect of E1B 55-kDa mutant adenovirus on human hepatocellular carcinoma cell lines. Cancer Gene. Ther. 8, 333-341. https://doi.org/10.1038/sj.cgt.7700316

Cited by

  1. PE38KDEL-loaded anti-HER2 nanoparticles inhibit breast tumor progression with reduced toxicity and immunogenicity vol.115, pp.1, 2009, https://doi.org/10.1007/s10549-008-0043-0
  2. Using gold nanorods labelled with antibodies under the photothermal action of NIR laser radiation on Staphylococcus aureus vol.44, pp.7, 2014, https://doi.org/10.1070/QE2014v044n07ABEH015497
  3. Ligand-modified gene carriers increased uptake in target cells but reduced DNA release and transfection efficiency vol.6, pp.2, 2010, https://doi.org/10.1016/j.nano.2009.09.001
  4. Anti-P-glycoprotein conjugated nanoparticles for targeting drug delivery in cancer treatment vol.34, pp.10, 2011, https://doi.org/10.1007/s12272-011-1012-4
  5. Development and characterization of a fully functional small anti-HER2 antibody vol.42, pp.10, 2009, https://doi.org/10.5483/BMBRep.2009.42.10.636
  6. Microneedle-mediated intradermal nanoparticle delivery: Potential for enhanced local administration of hydrophobic pre-formed photosensitisers vol.7, pp.4, 2010, https://doi.org/10.1016/j.pdpdt.2010.09.001
  7. Nanomedicine strategies for drug delivery to the ear vol.8, pp.7, 2013, https://doi.org/10.2217/nnm.13.104
  8. Conatumumab (AMG 655) coated nanoparticles for targeted pro-apoptotic drug delivery vol.32, pp.33, 2011, https://doi.org/10.1016/j.biomaterials.2011.07.065
  9. Enzymatic Polymerization of Cyclic Monomers in Ionic Liquids as a Prospective Synthesis Method for Polyesters Used in Drug Delivery Systems vol.20, pp.1, 2014, https://doi.org/10.3390/molecules20010001
  10. Development of SM5-1-conjugated ultrasmall superparamagnetic iron oxide nanoparticles for hepatoma detection vol.374, pp.2, 2008, https://doi.org/10.1016/j.bbrc.2008.06.126
  11. Magnetic albumin immuno-nanospheres as an efficient gene delivery system for a potential use in lung cancer: preparation, in vitro targeting and biological effect analysis vol.24, pp.3, 2016, https://doi.org/10.3109/1061186X.2015.1070857
  12. The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting vol.5, pp.9, 2010, https://doi.org/10.2217/nnm.10.113
  13. Antibody-targeted nanoparticles for cancer treatment vol.8, pp.8, 2016, https://doi.org/10.2217/imt.16.11
  14. Antibody-Conjugated Nanoparticles for Biomedical Applications vol.2009, 2009, https://doi.org/10.1155/2009/439389
  15. Effects of Size and Surface Charge of Polymeric Nanoparticles on <i>in Vitro</i> and <i>in Vivo</i> Applications vol.07, pp.02, 2016, https://doi.org/10.4236/jbnb.2016.72011
  16. Antibody engineering promotes nanomedicine for cancer treatment vol.5, pp.8, 2010, https://doi.org/10.2217/nnm.10.94
  17. Intravascular site-specific delivery of a therapeutic antisense for the inhibition of restenosis vol.35, pp.5, 2008, https://doi.org/10.1016/j.ejps.2008.09.003
  18. Ligand-based targeted therapy for cancer tissue vol.6, pp.3, 2009, https://doi.org/10.1517/17425240902780166
  19. Recent Advances in the Generation of Antibody-Nanomaterial Conjugates vol.7, pp.1, 2017, https://doi.org/10.1002/adhm.201700607