Simplified Nonlinear Static Progressive Collapse Analysis of Steel Moment Frames

철골모멘트골조의 비선형 정적 연쇄붕괴 근사해석

  • Received : 2007.02.22
  • Accepted : 2007.06.13
  • Published : 2007.08.27

Abstract

A simplified model which incorporates the moment-axial tension interaction of the double-span beams in a column-removed steel frame is presented in this paper. To this end, material and geometric nonlinear parametric finite element analyses were conducted for the double-span beams by changing the beam span to depth ratio and the beam size within some practical ranges. The beam span to depth ratio was shown to be the most influential factor governing the catenary action of the double-span beams. Based on the parametric analysis results, a simplified piece-wise linear model which can reasonably describe the vertical resisting force versus the beam chord rotation relationship was proposed. It was also shown that the proposed method can readily be used for the energy-based progressive collapse analysis of steel moment frames.

본 논문에서는 비선형 유한요소해석을 기초로 기둥이 손실된 철골모멘트골조의 2경간 보 모멘트-축인장력 상호작용의 모형화 방안을 제안하였다. 본 목적을 위해 기둥이 손실된 2경간 부분골조 모델을 구성한 후 보스팬길이 대 보춤 비 및 보 사이즈를 변수로 하여 재료적/기하학적 비선형이 고려된 유한요소해석을 수행하였다. 비선형 해석을 통하여 보스팬길이 대 보춤 비가 보의 현수작용 발현에 가장 지배적인 요소임을 확인하였다. 해석결과를 토대로 초기 탄성거동에서부터 현수작용에 이르기까지의 보의 현회전각-수직저항력 관계를 일련의 선형 모델로서 근사화하는 방안을 제안하였다. 아울러, 본 연구에서 제안한 방안을 에너지평형법과 결합하여 철골모멘트골조의 비선형 정적 연쇄붕괴해석 및 설계에 편리하게 활용될 수 있음을 예시하였다.

Keywords

References

  1. 황성윤, 문태섭, 선병택 (1984), H형단면 철골보의 내력에 관 한 연구, 대한건축학회 추계학술발표회, 제4권, 제2호, pp.201-204
  2. American Concrete Institute (ACI) (2002), Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318R-02), ACI
  3. American Institute of Steel Construction (AISC) (2004), Facts for Steel Buildings: Blast and Progressive Collapse, AISC
  4. American Institute of Steel Construction (2004), Seismic Provisions for Structural Steel Buildings, Draft of ANSI/AISC 341-05
  5. American Society of Civil Engineers (ASCE) (2003), Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-02
  6. Department of Defense (2004), Design of Buildings to Resist Progressive Collapse, Unified Facilities Criteria (UFC) 4-023-03, approved for public release, distribution unlimited
  7. Federal Emergency Management Agency (FEMA) (1997), NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Report No. FEMA 273, prepared by the Applied Technology Council for FEMA, Washington, D.C.
  8. Federal Emergency Management Agency (FEMA) (2000), NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Report No. FEMA 356, prepared by the Applied Technology Council for FEMA, Washington, D.C.
  9. Gupta, A., and Krawinkler, H. (1999), Seismic Demands for Performance Evaluation of Steel Moment Resisting Frame Structures, John A. Blume Earthquake Engrg, Ctr, Rep. No. 132, Dept. of Civ. Engrg., Stanford University, Stanford, Calif
  10. Hamburger, R. O. and Whittaker, A. S. (2004), Design of Steel Structures for Blast-Related Progressive Collapse Resistance, March 2004, Modern Steel Construction, pp.45-51
  11. HKS (2001), ABAQUS/Standard User's Manual version 6.2, Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, Rhode Island
  12. Lee, C-. H. and Kim, J-. H. (2006), Effects Panel Zone Strength on Cyclic Performance of Reduced Beam Section Steel Moment Connections, International Colloquium on Stability and Ductility of Steel Structures, Lisbon, Portugal
  13. Powell, G. (2003), Collapse Analysis Made Easy (More or Less), Proceedings, Los Angeles Tall Buildings Structural Design Council Annual Meeting, Los Angeles
  14. U.S. General Service Administration (GSA) (2003), Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects