Load Distribution Factors for Two-Span Continuous I-Girder Bridges

2경간 연속 I-형교의 하중분배계수

  • Received : 2007.01.10
  • Accepted : 2007.03.27
  • Published : 2007.04.27

Abstract

Previous finite element studies have shown that AASHTO Standard load distribution factor (LDF) equations appear to be conservative for longer spans and larger girder spacing, but too permissible for short spans and girder spacing. AASHTO LRFD specification defines the distribution factor equation for girder spacing, span length, slab thickness, and longitudinal stiffness. However, this equation requires an iterative procedure to correctly determine the LDF value due to an initially unknown longitudinal stiffness parameter. This study presents a simplified LDF equation for interior and exterior girders of two-span continuous I-girder bridges that does not require an iterative design procedure. The finite element method was used to investigate the effect of girder spacing, span length, slab thickness, slab width, and spacing and size of bracing. The computer program, GTSTRUDL, was used to idealize the bridge superstructures as the eccentric beam model, the concrete slab by quadrilateral shell elements, steel girders by space frame members, and the composite action between these elements by rigid links. The distribution factors obtained from these analyses were compared with those from the AASHTO Standard and LRFD methods. It was observed through the parametric studies that girder spacing, span length, and slab thickness were the dominant parameters compared with others. The LRFD distribution factor for the interior girder was found to be conservative in most cases, whereas the factor for the exterior girder to be unconservative in longer spans. Furthermore, a regression analysis was performed to develop simplified LDF formulas. The formulas developed in this study produced LDF values that are always conservative to those from the finite element method and are generally smaller than the LDF values obtained from the AASHTO LRFD specification. The proposed simplified equation will assist bridge engineers in predicting the actual LDF in two-span continuous I-girder bridges.

AASHTO Standard의 하중분배계수식은 지간과 주형간격이 클수록 안전측으로 나타나지만, 지간과 주형간격이 작으면 비안전측임을 기존의 유한요소 연구에서 밝혀졌다. AASHTO LRFD는 주형간격, 지간, 바닥판 두께, 그리고 종방향 강성에 따른 분배계수식을 규정하고는 있으나, 이 식은 초기에 알려지지 않은 종방향 강성 때문에 정확한 하중분배계수 값을 결정하기 위해서는 반복절차가 요구되어진다. 따라서 본 연구에서는 2경간 연속 I-형교의 내측 및 외측주형에 대하여 반복설계 과정을 필요로 하지 않는 하중분배계수 간략식을 제안한다. 주형간격, 주형길이, 바닥판 두께, 바닥판 폭, 그리고 브레이싱의 간격 및 크기의 영향을 조사하기 위하여 유한요소법을 사용하였다. GTSTRUDL을 사용하여 교량 상부구조를 편심 보모델로 이상화 하였으며, 바닥판은 쉘요소, 거더는 보요소, 그리고 이 요소들의 합성거동을 위하여 강절링크로 연결하였다. 이 해석으로부터 얻은 분배계수를 AASHTO Standard와 LRFD 방법과 비교하였으며, 다른 매개변수들에 비해 거더간격, 지간, 그리고 바닥판 두께는 분배계수에 미치는 영향이 크게 나타났다. 내측주형에서 LRFD의 분배계수는 대부분의 경우에 안전측으로 나타났지만, 외측주형에서는 지간이 길 경우 비안전측으로 나타났다. 또한, 회귀분석을 수행하여 하중분배계수 간략식을 개발하였으며, 이 식에 의한 하중분배계수는 유한요소결과 보다는 항상 안전측이면서, AASHTO LRFD 보다는 일반적으로 작게 나타났다. 제안된 간략식은 2경간 연속 I-형교에 대한 실제 하중분배계수 산정에서 교량설계자들에게 도움을 줄 것이다.

Keywords

References

  1. 건설교통부 (2005) 도로교설계기준, 한국도로교통협회
  2. 구민세, 연정흠, 정재운, 강동현 (2003) 2경간 연속 프리스트레스트 콘크리트 사교의 윤하중 분배에 관한 연구, 대한토목학회논문집, 대한토목학회, 제23권, 제6A호, pp. 1057-1066
  3. AASHTO (2004) LRFD Bridge Design Specifications, 3rd Ed., Washington, D.C
  4. AASHTO (2002) Standard Specifications for Highway Bridges, 16th Ed., Washington, D.C
  5. Barker, R.M., and Puckett, J.A. (1997) Design of highway bridges: based on AASHTO LRFD Bridge Design Specifications, John Wiley & Sons
  6. Barr, P.J., Eberhard, M.O., and Stanton, J. (2001) Live-load distribution factors in prestressed concrete girder bridges, J. Bridge Engrg., ASCE, Vol. 6, No. 5, pp. 298-306 https://doi.org/10.1061/(ASCE)1084-0702(2001)6:5(298)
  7. Bishara, A.G., Liu, M.C., and Ali, N.D. (1993) Wheel load distribution on simply supported skew i-beam composite bridges, J. Struct. Engrg., ASCE, Vol. 119, No. 2, pp. 399-419 https://doi.org/10.1061/(ASCE)0733-9445(1993)119:2(399)
  8. Cai, C.S. (2005) Discussion on AASHTO LRFD load distribution factors for slab-on-girder bridges, Practice Periodical on Structural Design and Construction, ASCE, Vol. 10, No. 3, pp. 171-176 https://doi.org/10.1061/(ASCE)1084-0680(2005)10:3(171)
  9. Cai, C.S., and Shahawy, M. (2004) Predicted and measured performance of prestressed concrete bridges, J. Bridge Engrg., ASCE, Vol. 9, No. 1, pp. 4-13 https://doi.org/10.1061/(ASCE)1084-0702(2004)9:1(4)
  10. Chung, W., and Sotelino, E.D. (2006) Three-dimensional finite element modeling of composite girder bridges, Engineering Structures, Vol. 28, No. 1, pp. 63-71 https://doi.org/10.1016/j.engstruct.2005.05.019
  11. GTSTRUDL (2004) User Guide, Georgia institute of technology, Georgia
  12. Huo, X.S., Wasserman, E.P., and Zhu, P. (2004) Simplified method of lateral distribution of live load moment, J. Bridge Engrg., ASCE, Vol. 9, No. 4, pp. 382-390 https://doi.org/10.1061/(ASCE)1084-0702(2004)9:4(382)
  13. Khaloo, A.R., and Mirzabozorg, H. (2003) Load distribution factors in simply supported skew bridges, J. Bridge Engrg., ASCE, Vol. 8, No. 4, pp. 241-244 https://doi.org/10.1061/(ASCE)1084-0702(2003)8:4(241)
  14. Mabsout, M.E., Tarhini, K.M., Frederick, G.R., and Tayar, C. (1997) Finite-element analysis of steel girder highway bridges, J. Bridge Engrg., ASCE, Vol. 2, No. 3, pp. 83-87 https://doi.org/10.1061/(ASCE)1084-0702(1997)2:3(83)
  15. Nowak, A.S., Eom, J., and Ferrand, D. (2003) Verification of girder distribution factors for continuous steel girder bridges, Report No. UMCEE 03-08, University of Michigan, Michigan
  16. Sotelino, E.D., Liu, J., Chung, W., and Phuvoravan, K. (2004) Simplified load distribution factor for use in LRFD design, Report No. FHWA/IN/JTRP-2004/20, Purdue University, Indiana
  17. Tarhini, K.M., and Frederick, G.R. (1992) Wheel load distribution in I-girder highway bridges, J. Struct. Engrg., ASCE, Vol. 118, No. 5, pp. 1285-1249 https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1285)
  18. Zokaie, T., Osterkamp, T.A., and Imbsen, R.A. (1991) Distribution of wheel loads on highway bridges, Report No. NCHRP 12-26/1, Transportation Research Board, Washington, D.C