DOI QR코드

DOI QR Code

Effects of Dietary Lysine and Microbial Phytase on Growth Performance and Nutrient Utilisation of Broiler Chickens

  • Selle, P.H. (Faculty of Veterinary Science, The University of Sydney) ;
  • Ravindran, V. (Institute of Food, Nutrition and Human Health, Massey University) ;
  • Ravindran, G. (Institute of Food, Nutrition and Human Health, Massey University) ;
  • Bryden, W.L. (School of Animal Studies, University of Queensland)
  • Received : 2006.09.27
  • Accepted : 2007.04.03
  • Published : 2007.07.01

Abstract

The effects of offering broilers phosphorus-adequate diets containing 10.0 and 11.8 g/kg lysine, without and with 500 FTU/kg exogenous phytase, on growth performance and nutrient utilisation were determined. Each of the four experimental diets was offered to 6 replicates of 10 birds from 7 to 28 days of age. Effects of treatment on performance, apparent metabolisable energy, apparent ileal digestibility of amino acids and bone mineralisation were examined. Both additional lysine and phytase supplementation improved (p<0.05) weight gain and feed efficiency, with interactions (p<0.05), as phytase responses were more pronounced in lysine-deficient diets. Phytase improved (p<0.05) apparent metabolisable energy, which was independent of the dietary lysine status. Bone mineralisation, as determined by percentage toe ash, was not affected by treatment, which confirms the phosphorus-adequate status of the diets. Phytase increased (p<0.05) the apparent ileal digestibility of the sixteen amino acids assessed. Unexpectedly, however, the dietary addition of 1.8 g/kg lysine, as lysine monohydrochloride, increased (p<0.05) the ileal digestibility of lysine per se and also that of isoleucine, methionine, phenylalanine, valine, aspartic acid, glutamic acid and tyrosine. In addition, there were significant interactions (p<0.05) between additional lysine and phytase supplementation for arginine, lysine, phenylalanine, aspartic acid, glutamic acid, glycine and serine digestibilities, with the effects of phytase being more pronounced in lysine-deficient diets. The possible mechanisms underlying the increases in amino acid digestibility in response to additional lysine and the interactions between lysine and microbial phytase in this regard are discussed. Also, consideration is given to the way in which phytate and phytase may influence ileal digestibility of amino acids.

Keywords

References

  1. Cowieson, A. J., T. Acamovic and M. R. Bedford. 2004. The effects of phytase and phytic acid on the loss of endogenous amino acids and minerals from broiler chickens. Br. Poult. Sci. 45:101-108. https://doi.org/10.1080/00071660410001668923
  2. Croom, W. J., J. Brake, B. A. Coles, G. B. Havenstein, V. L. Christensen, B. W. McBride, E. D. Peebles and I. L. Taylor. 1999. Is intestinal absorption capacity rate-limiting for performance in poultry? J. Appl. Poult. Res. 8:242-252. https://doi.org/10.1093/japr/8.2.242
  3. Demjen, A. P. and L. U. Thompson. 1991. Calcium and phytic acid independently lower the glycemic response to a glucose load. Proceedings, 34th Canadian Federation of Biological Sciences, p53 (Abstr).
  4. Eggum, B. O. and I. Jacobsen. 1976. Amino acid digestibility of protein concentrates given separately or together with cereal grains. J. Sci. Food Agric. 27:1190-1196. https://doi.org/10.1002/jsfa.2740271216
  5. Engelen, A. J., F. C. van der Heeft, P. H. G. Randsdorp and E. L. C. Smit. 1994. Simple and rapid determination of phytase activity. J. AOAC Int. 77:760-764.
  6. Gagne, F., J. J. Matte, G. Barnett and C. Pomar. 2002. The effect of microbial phytase and feed restriction on protein, fat and ash deposition in growing-finishing pigs. Can. J. Anim. Sci. 82:551-558. https://doi.org/10.4141/A01-076
  7. Gal-Garber, O., S. J. Mabjeesh, D. Sklan and Z. Uni. 2003. Nutrient transport in the small intestine: $Na^+$,$K^+$-ATPase expression and activity in the small intestine of the chicken as influenced by dietary sodium. Poult. Sci. 82:1127-1133. https://doi.org/10.1093/ps/82.7.1127
  8. Ganapathy, V. and F. H. Leibach. 1985. Is intestinal peptide transport energized by a proton gradient? Amer. J. Physiol. (Gastro. Liver Physiol. 12) 249:G153-G160.
  9. Ganapathy, V., M. Brandsch and F. H. Leibach. 1994. Intestinal transport of amino acids. In: Physiology of the Gastrointestinal Tract. Third edition, pp. 1773-1794 (Ed. L. R. Johnson) Raven Press, New York.
  10. Haydon, K. D. and J. W. West. 1990. Effect of dietary electrolyte balance on nutrient digestibility at the end of the small intestine and over the total digestive tract in growing pigs. J. Anim. Sci. 68:3687-3693. https://doi.org/10.2527/1990.68113687x
  11. Humphrey, B. D., C. B. Stephensen, C. C. Calver and K. C. Klasing. 2006. Lysine deficiency and feed restriction independently alter cationic amino acid expression in chickens (Gallus gallus domesticus). Comp. Biochem. Physiol. Part A 143:218-227. https://doi.org/10.1016/j.cbpa.2005.11.019
  12. Iji, P. A., A. Saki and D. R. Tivey. 2001. Body and intestinal growth of broiler chicks on a commercial starter diet. 3. Development and characteristics of tryptophan transport. Br. Poult. Sci. 42:523-529. https://doi.org/10.1080/00071660120073160
  13. Jaso, M. J., M. Vial and M. Moreto. 1995. Hexose accumulation by enterocytes from the jejunum and rectum of chickens adapted to high and low NaCl intakes. Pflugers Archiv 429:511-516. https://doi.org/10.1007/BF00704156
  14. Johnson, R. J. and H. Karunajeewa. 1985. The effects of dietary minerals and electrolytes on the growth and physiology of the young chick. J. Nutr. 115:1680-1690. https://doi.org/10.1093/jn/115.12.1680
  15. Johnston, S. L., S. B. Williams, L. L. Southern, T. D. Bidner, L. D. Bunting, J. O. Matthews and B. M Olcott. 2004. Effect of phytase addition and dietary calcium and phosphorus levels on plasma metabolites and ileal and total tract nutrient digestibility in pigs. J. Anim. Sci. 82:705-714. https://doi.org/10.2527/2004.823705x
  16. Kies, A. K., W. J. J. Gerrits, J. W. Schrama, M. J. W. Heetkamp, K. L. van der Linden, T. Zandstra and M. W. A. Verstegen. 2005. Mineral absorption and excretion as affected by microbial phytase, and their effect on energy metabolism in young piglets. J. Nutr. 135:1131-1138. https://doi.org/10.1093/jn/135.5.1131
  17. Munck, B. G. 1989. Amino acid transport across the hen colon: interactions between leucine and lysine. Amer. J. Physiol. (Gastro. Liver Physiol. 19) 256:G532-G539. https://doi.org/10.1152/ajpcell.1989.256.3.C532
  18. Nyachoti, C. M., C. F. M. de Lange, B. W. McBride and H. Schulze. 1997. Significance of endogenous gut nitrogen losses in the nutrition of growing pigs: a review. Can. J. Anim. Sci. 77:149-163. https://doi.org/10.4141/A96-044
  19. Paik, I. K. 2003. Application of phytase, microbial or plant origin, to reduce phosphorus excretion in poultry production. Asian-Aust. J. Anim. Sci. 16:124-135. https://doi.org/10.5713/ajas.2003.124
  20. Potter, L. M. 1988. Bioavailability of phosphorus from various phosphates based on body weight and toe ash measurements. Poult. Sci. 67:96-102. https://doi.org/10.3382/ps.0670096
  21. Ravindran, V., P. C. H. Morel, G. G. Partridge, M. Hruby and J. S. Sands. 2006. Influence of an E. coli-derived phytase on nutrient utilization in broiler starters fed diets containing graded levels of phytate. Poult. Sci. 85:82-89. https://doi.org/10.1093/ps/85.1.82
  22. Rickard, S. E. and L. U. Thompson. 1997. Interactions and biological effects of phytic acid. In: Antinutrients and Phytochemicals in Food (Ed. F. Shahidi) pp. 294-312. American Chemical Society, Washington DC.
  23. Selle, P. H., V. Ravindran, R. A. Caldwell and W. L. Bryden. 2000. Phytate and phytase: consequences for protein utilisation. Nutr. Res. Rev. 13:255-278. https://doi.org/10.1079/095442200108729098
  24. Selle, P. H., V. Ravindran, G. Ravindran, P. H. Pittolo and W. L. Bryden. 2003a. Influence of phytase and xylanase supplementation on growth performance and nutrient utilisation of broilers offered wheat based diets. Asian-Aust. J. Anim. Sci. 16:394-402. https://doi.org/10.5713/ajas.2003.394
  25. Selle, P. H., V. Ravindran, P. H. Pittolo and W. L. Bryden. 2003b. Effects of phytase supplementation of diets with two tiers of nutrient specifications on growth performance and protein efficiency ratios of broiler chickens. Asian-Aust. J. Anim. Sci. 16:1158-1164 https://doi.org/10.5713/ajas.2003.1158
  26. Selle, P. H., V. Ravindran, W. L. Bryden and T. Scott. 2006. Influence of dietary phytate and exogenous phytase on amino acid digestibility in poultry: a review. J. Poult. Sci. 43:89-103. https://doi.org/10.2141/jpsa.43.89
  27. Selle, P. H. and V. Ravindran. 2007. Review. Microbial phytase in poultry nutrition. Anim. Feed Sci. Technol. 135:1-41. https://doi.org/10.1016/j.anifeedsci.2006.06.010
  28. Simons, P. C. M., H. A. J. Versteegh, A. W. Jongbloed, P. A Kemme, P. Slump, K. D. Bos, M. G. E. Wolters, R. F. Beudeker and G. J. Verschoor. 1990. Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br. J. Nutr. 64:525-540 https://doi.org/10.1079/BJN19900052
  29. Singh, P. K., V. K. Khatta, R. S. Thakur, S. Dey and M. L. Sangwan. 2003. Effect of phytase supplementation on the performance of broiler chickens fed maize and wheat based diets with different levels of non-phytate phosphorus. Asian-Aust. J. Anim. Sci. 16:1642-1649. https://doi.org/10.5713/ajas.2003.1642
  30. Sklan, D. and Y. Noy. 2000. Hydrolysis and absorption in the small intestine of posthatch chicks. Poult. Sci. 79:1306-1310. https://doi.org/10.1093/ps/79.9.1306
  31. Tao, R., R. J. Belzile and G. J. Brisson. 1971. Amino acid digestibility of rapeseed meal fed to chickens: effects of fat and lysine supplementation. Can. J. Anim. Sci. 51:705-709. https://doi.org/10.4141/cjas71-094
  32. Thompson, L. U., C. L. Button and D. J. A. Jenkins. 1987. Phytic acid and calcium affect the in vitro rate of navy bean starch digestion and blood glucose responses in humans. Am. J. Clin. Nutr. 46:467-473. https://doi.org/10.1093/ajcn/46.3.467
  33. Torras-Llort, M., D. Torrent, J. F. Soriano-Garcia, R. Ferrer and M. Moreto. 1998. Effect of a lysine-enriched diet on L-lysine transport by the brush-border membrane of the chicken jejunum. Amer. J. Physiol. (Regul. Integr. Comp. Physiol. 43) 274:R69-R75.
  34. Torras-Llort, M., D. Torrent, J. F. Soriano-Garcia, J. L. Gelpi, R. Estevez, R. Ferrer, M. Palacin and M. Moreto. 2001. Sequential amino acid exchange across $b^{0,+}$-like system in chicken brush border jejunum. J. Memb. Biol. 180:213-220. https://doi.org/10.1007/s002320010072
  35. Um, J. S., H. S. Lim, S. H. Ahn and I. K. Paik. 2000. Effects of microbial phytase supplementation to low phosphorus diets on the performance and utilization of nutrients in broiler chickens. Asian-Aust. J. Anim. Sci. 13:824-829. https://doi.org/10.5713/ajas.2000.824
  36. Welsch, C. A., P. A. Lachance and B. P. Wasserman. 1989. Dietary phenolic compounds: Inhibition of $Na^+$-dependent glucose uptake in rat intestinal brush border membrane vesicles. J. Nutr. 119:1698-1704. https://doi.org/10.1093/jn/119.11.1698
  37. Wise, A. 1983. Dietary factors determining the biological activity of phytates. Nutr. Abstr. Rev. Clin. Nutr. 53:791-806.

Cited by

  1. Significance of phytic acid and supplemental phytase in chicken nutrition: a review vol.64, pp.04, 2008, https://doi.org/10.1017/S0043933908000202
  2. Phytate and microbial phytase: implications for endogenous nitrogen losses and nutrient availability vol.65, pp.03, 2009, https://doi.org/10.1017/S0043933909000294
  3. Effects of supplementation of multi-enzyme and multi-species probiotic on production performance, egg quality, cholesterol level and immune system in laying hens vol.39, pp.4, 2011, https://doi.org/10.1080/09712119.2011.621538
  4. Protein–phytate interactions in pig and poultry nutrition: a reappraisal vol.25, pp.01, 2012, https://doi.org/10.1017/S0954422411000151
  5. Improvements in growth performance, bone mineral status and nutrient digestibility in pigs following the dietary inclusion of phytase are accompanied by modifications in intestinal nutrient transporter gene expression vol.112, pp.05, 2014, https://doi.org/10.1017/S0007114514001494
  6. Bioefficacy of a mono-component protease in the diets of pigs and poultry: a meta-analysis of effect on ileal amino acid digestibility vol.2, pp.2049-257X, 2014, https://doi.org/10.1017/jan.2014.5
  7. Phytate in pig and poultry nutrition vol.99, pp.4, 2015, https://doi.org/10.1111/jpn.12258
  8. Effects of Adding Insoluble Non-starch Polysaccharides and Exogenous Enzymes to a Commercial Broiler Diet on the Growth Performance and Carcass Weight of Broiler Chickens vol.16, pp.4, 2017, https://doi.org/10.3923/pjn.2017.227.235
  9. Increased iron level in phytase-supplemented diets reduces performance and nutrient utilisation in broiler chickens vol.58, pp.4, 2017, https://doi.org/10.1080/00071668.2017.1315050
  10. Genetically modified phytase crops role in sustainable plant and animal nutrition and ecological development: a review vol.7, pp.3, 2017, https://doi.org/10.1007/s13205-017-0797-3
  11. Evaluation of Phytate-Degrading Lactobacillus Culture Administration to Broiler Chickens vol.80, pp.3, 2014, https://doi.org/10.1128/AEM.03155-13
  12. Effects of Different Levels of Supplementary Alpha-amylase on Digestive Enzyme Activities and Pancreatic Amylase mRNA Expression of Young Broilers vol.21, pp.1, 2007, https://doi.org/10.5713/ajas.2008.70110
  13. Effects of $1{\alpha}$-Hydroxycholecalciferol and Phytase on Growth Performance, Tibia Parameter and Meat Quality of 1- to 21-d-old Broilers vol.22, pp.6, 2007, https://doi.org/10.5713/ajas.2009.80623
  14. Consequences of calcium interactions with phytate and phytase for poultry and pigs vol.124, pp.1, 2007, https://doi.org/10.1016/j.livsci.2009.01.006
  15. Beneficial effects of xylanase and/or phytase inclusions on ileal amino acid digestibility, energy utilisation, mineral retention and growth performance in wheat-based broiler diets vol.153, pp.3, 2009, https://doi.org/10.1016/j.anifeedsci.2009.06.011
  16. Mineral Retention in Young Broiler Chicks Fed Diets Based on Wheat, Sorghum or Maize vol.23, pp.1, 2007, https://doi.org/10.5713/ajas.2010.90129
  17. Evaluation of nutrient equivalency of microbial phytase in hens in late lay given maize-soybean or distiller's dried grains with solubles (DDGS) diets vol.54, pp.4, 2013, https://doi.org/10.1080/00071668.2013.797954
  18. Preference and Passage through the Gastrointestinal Tract of Paddy Rice in Young Chicks vol.51, pp.1, 2007, https://doi.org/10.2141/jpsa.0130058
  19. Cottonseed meal protein hydrolysate stimulates feed intake and appetite in Chinese mitten crab, Eriocheir sinensis vol.25, pp.5, 2007, https://doi.org/10.1111/anu.12916
  20. Genetic and Phenotypic Characteristics of a Multi-strain Probiotic for Broilers vol.77, pp.3, 2007, https://doi.org/10.1007/s00284-019-01797-3
  21. Antimicrobial peptides as an additive in broiler chicken nutrition: a meta-analysis of bird performance, nutrient digestibility and serum metabolites vol.30, pp.2, 2007, https://doi.org/10.22358/jafs/136400/2021
  22. Effects of phytase supplementation and increased nutrient density on growth performance, carcass characteristics, and hypothalamic appetitive hormone expression and catecholamine concentrations in bro vol.100, pp.12, 2021, https://doi.org/10.1016/j.psj.2021.101495