DOI QR코드

DOI QR Code

The G23 and G25 Genes of Temperate Mycobacteriophage L1 Are Essential for The Transcription of Its Late Genes

  • Published : 2007.03.31

Abstract

Two lysis-defective but DNA synthesis non-defective temperature-sensitive (ts) mutants of mycobacteriophage L1, L1G23ts23 and L1G25ts889 were found to be defective also in phage-specific RNA synthesis in the late period of their growth at 42$^{\circ}C$each to the extent of 50% of that at 32$^{\circ}C$The double mutant, L1G23ts23G25ts889 showed the ts defect in phage RNA synthesis that was nearly additive of those shown individually by the two single-mutant parents. Both G23 and G25 were shown to start functioning sometimes between 30 and 45 min after infection but the former gene might be dispensable after 45 min, while the latter was not. Northern analysis also shows that at 42$^{\circ}C$>, L1G23ts23 affects RNA synthesis more strongly than L1G25ts889 from L1 DNA segments that serve as the template for late gene transcription. Among the 21 virion and 12 non-virion late proteins synthesized by L1, L1G23ts23 is defective in the synthesis of at least 9 virion and all of non-virion proteins at 42$^{\circ}C$>. In contrast, L1G25ts889 is completely defective in synthesis of all the 33 late proteins. Possible roles of G23 and G25 in the positive regulation of transcription of different sets of late genes of L1 have been discussed.

Keywords

References

  1. Brown, K. L., Sarkis, G. J., Wadsworth, C. and Hatfull, G. F. (1997) Transcriptional silencing by the mycobacteriophage L5 repressor. EMBO J. 16, 5914-5921. https://doi.org/10.1093/emboj/16.19.5914
  2. Calendar, R. (1970) The regulation of phage development. Annu. Rev. Microbiol. 24, 241-296. https://doi.org/10.1146/annurev.mi.24.100170.001325
  3. Chattopadhyay, C., Sau, S. and Mandal, N. C. (2003) Cloning and characterization of the promoters of temperate mycobacteriophage L1. J. Biochem. Mol. Biol. 36, 586-592. https://doi.org/10.5483/BMBRep.2003.36.6.586
  4. Chaudhuri, B., Sau, S., Datta, H. J. and Mandal, N. C. (1993) Isolation, characterization, and mapping of temperaturesensitivemutations in the genes essential for lysogenic and lytic growth of the mycobacteriophage L1. Virology 194, 166-173. https://doi.org/10.1006/viro.1993.1246
  5. Cho, N. Y., Choi, M. and Rothman-Denes, L. B. (1995) The bacteriophage N4-coded single-stranded DNA-binding protein is the transcriptional activator of Escherichia coli RNA polymerase at N4 late promoters. J. Mol. Biol. 246, 461-471. https://doi.org/10.1006/jmbi.1994.0098
  6. Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Anal. Biochem. 162, 156-159.
  7. Dambly, C. and Couturier, M. (1971) A minor Q-independent pathway for the expression of late genes in bacteriophage lambda. Mol. Gen. Genet. 113, 244-250. https://doi.org/10.1007/BF00339545
  8. Datta, H. J. and Mandal, N. C. (1998) Identification of an early positive regulatory gene of mycobacteriophage L1. J. Gen. Virol. 79, 205-210. https://doi.org/10.1099/0022-1317-79-1-205
  9. Denhardt, D. T. (1966) A membrane filter technique for the detection of complementary DNA. Biochem. Biophys. Res. Comm. 23, 641-646. https://doi.org/10.1016/0006-291X(66)90447-5
  10. Doke, S. (1960) Studies on mycobacteriophages and lysogenic mycobacteria. Kumamoto Med. J. 34, 1360-1373.
  11. Donnelly-Wu, M. K., Jacobs, W. R. Jr. and Hatfull, G. F. (1993) Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria. Mol. Microbiol. 7, 407-417. https://doi.org/10.1111/j.1365-2958.1993.tb01132.x
  12. Ganguly, T., Chattoraj, P., Das, M., Chanda, P. K., Mandal, N. C. and Sau, S. (2004) A point mutation at the C-terminal half of the repressor of temperate mycobacteriophage L1 affects its binding to the operator DNA. J. Biochem. Mol. Biol. 37, 709- 714. https://doi.org/10.5483/BMBRep.2004.37.6.709
  13. Geiduschek, E. P. (1991) Regulation of expression of the late genes of bacteriophage T4. Annu. Rev. Genet. 25, 437-460. https://doi.org/10.1146/annurev.ge.25.120191.002253
  14. Geiduschek, E. P., Elliot, T. and Kassavetis, G. A. (1983) Regulation of late gene expression; in Bacteriophage T4, C. K. Mathews, E. M. Kutter, G. Mosig, & P. B. Berget. (eds.), pp. 189-193, American Society of Microbiology, Washington DC, USA.
  15. Hatfull, G. F. and Sarkis, G. J. (1993) DNA sequence, structure, and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Mol. Microbiol. 7, 395-405. https://doi.org/10.1111/j.1365-2958.1993.tb01131.x
  16. Herskowitz, I. (1973) Control of gene expression in bacteriophage lambda. Annu. Rev. Genet. 7, 289-324. https://doi.org/10.1146/annurev.ge.07.120173.001445
  17. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  18. Mandal, N. C., Bhattacharyya, R., Sau, S. and Chaudhuri, B. (2004) Studies on temperate mycobacteriophage L1: its physical map, site of deletion in one of its mutant, and organization of early, delayed early and late genes. Perspective in Cytology & Genetics, Manna, G. K. and Roy, S. C. (eds.), pp. 81-100, AICCG Publications, Kolkata, India.
  19. Nesbit, C. E., Levin, M. E., Donnelly-Wu, M. K. and Hatfull G. F. (1995) Transcriptional regulation of repressor synthesis in mycobacteriophage L5. Mol Microbiol. 17, 1045-1056. https://doi.org/10.1111/j.1365-2958.1995.mmi_17061045.x
  20. Roberts, J. W. (1975) Transcription termination and late control in phage lambda. Proc. Natl. Acad. Sci. USA 72, 3300-3304. https://doi.org/10.1073/pnas.72.9.3300
  21. Roberts, J. W. (1993) RNA and protein elements of E. coli and transcription antitermination complexes. Cell 72, 653-655. https://doi.org/10.1016/0092-8674(93)90394-6
  22. Sambrook, J., and Russell, D. W. (2001) In Molecular Cloning: A Laboratory Manual. 3rd ed., Cold Spring Harbor Laboratory Press, CSH, New York, USA.
  23. Sato, K. and Campbell, A. M. (1970) Specialized transduction of galactose by lambda phage from a deletion lysogen. Virology 41, 474-487. https://doi.org/10.1016/0042-6822(70)90169-8
  24. Sau, S., Chattoraj, P., Ganguly, T., Lee, C. Y. and Mandal, N. C. (2004). Cloning and sequencing analysis of the repressor gene of temperate mycobacteriophage L1. J. Biochem. Mol. Biol. 37, 254-259. https://doi.org/10.5483/BMBRep.2004.37.2.254
  25. Snapper, S. B., Lugosi, L., Jekkel, A., Melton, R. E., Kieser, T., Bloom, B. R. and Jacobs (Jr.), W. R. (1988) Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc. Natl. Acad. Sci. USA 85, 6987-6991. https://doi.org/10.1073/pnas.85.18.6987
  26. Williams, K. P., Kassavetis, G. A., Herendeen, D. R. and Geiduschek, E. P. (1994) Regulation of late gene expression; in Molecular Biology of Bacteriophage T4, Karam, J. D. (eds.), pp. 161-175, American Society of Microbiology, Washington DC, USA.

Cited by

  1. Mycobacteriophages: Genes and Genomes vol.64, pp.1, 2010, https://doi.org/10.1146/annurev.micro.112408.134233
  2. Diversity in bacterial lysis systems: bacteriophages show the way vol.37, pp.4, 2013, https://doi.org/10.1111/1574-6976.12006