DOI QR코드

DOI QR Code

Utility of Selected Non-coding Chloroplast DNA Sequences for Lineage Assessment of Musa Interspecific Hybrids

  • Swangpol, Sasivimon (Biological Sciences Program, Faculty of Science, Chulalongkorn University) ;
  • Volkaert, Hugo (Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus) ;
  • Sotto, Rachel C. (Plant Biology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines, Los Banos, College) ;
  • Seelanan, Tosak (Biological Sciences Program, Faculty of Science, Chulalongkorn University)
  • Published : 2007.07.31

Abstract

Single-copy chloroplast loci are used widely to infer phylogenetic relationship at different taxonomic levels among various groups of plants. To test the utility of chloroplast loci and to provide additional data applicable to hybrid evolution in Musa, we sequenced two introns, rpl16 and ndhA, and two intergenic spacers, psaA-ycf3 and petA-psbJ-psbL-psbF and combined these data. Using these four regions, Musa acuminata Cola(A)- and M. balbisiana Colla (B)-containing genomes were clearly distinguished. Some triploid interspecific hybrids contain A-type chloroplasts (the AAB/ABB) while others contain B-type chloroplasts (the BBA/BBB). The chloroplasts of all cultivars in 'Namwa' (BBA) group came from the same wild maternal origin, but the specific parents are still unrevealed. Though, average sequence divergences in each region were little (less than 2%), we propose that petA-psbJ intergenic spacer could be developed for diversity assessment within each genome. This segment contains three single nucleotide polymorphisms (SNPs) and two indels which could distinguish diversity within A genome whereas this same region also contains one SNP and an indel which could categorize B genome. However, an inverted repeat region which could form hairpin structure was detected in this spacer and thus was omitted from the analyses due to their incongruence to other regions. Until thoroughly identified in other members of Musaceae and Zingiberales clade, utility of this inverted repeat as phylogenetic marker in these taxa are cautioned.

Keywords

References

  1. Argent, G. C. G. (1976) The wild bananas of Papua New Guinea. Notes Roy. Bot. Gard. Edinb. 35, 77-114.
  2. Baum, D. A., Systsma, K. J. and Hoch, P. C. (1994) A phylogenetic analysis of Epilobium (Onagraceae) based on nuclear ribosomal DNA sequences. Syst. Bot. 19, 363-388. https://doi.org/10.2307/2419763
  3. Bhat, K., Jarret, R. L. and Liu, Z.-W. (1994) RFLP characterization of Indian Musa germplasm for clonal identification and classification. Euphytica 80, 95-103. https://doi.org/10.1007/BF00039303
  4. Bird, M. I., Hope, G. and Taylor, D. (2003) Population PEPII: the dispersal of humans and agriculture through Austral-Asia and Oceania. Quaternary Intl. 118-119, 145-163.
  5. Carreel, F., Gonzales de Leon, D., Lagoda, P., Lanaud, C., Jenny, C., Horry, J. P. and Tezenas du Montcel, H. (2002) Ascertaining maternal and paternal lineage within Musa by chloroplast and mitochondrial DNA RFLP analyses. Genome 45, 679-692. https://doi.org/10.1139/g02-033
  6. Cheesman, E. E. (1947) Classification of the bananas. Kew Bull. 2, 97-117. https://doi.org/10.2307/4109206
  7. Chomchalow, N. and Silayoi, B. (1984) Banana Germplasm in Thailand. IBPGR/SEAP Newsletter 8, 23-28.
  8. Clement, M., Posada, D. and Crandall, D. (2000) TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657-1660. https://doi.org/10.1046/j.1365-294x.2000.01020.x
  9. De Langhe, E. and De Maret, P. (1999) Tracking the banana: its significance in early agriculture; in The Prehistory of Food: Appitites for Change, Gosden, C. and Hather, J. (eds.), pp. 377-396, Routledge, London, UK.
  10. Farris, J. S., Kallersjo, M., Kluge, A. G. and Bult, C. (1995) Testing significance of incongruence. Cladistics 10, 315-319. https://doi.org/10.1111/j.1096-0031.1994.tb00181.x
  11. Gawel, N. J. and Jarret, R. L. (1991) Cytoplasmic genetic diversity in bananas and plantains. Euphytica 52, 15-23.
  12. Ge, X. J., Liu, M. H., Wang, W. K., Schaal, B. A. and Chiang, T. Y. (2005) Population Structure of Wild Bananas, Musa balbisiana, in China Determined by SSR Fingerprinting and cpDNA PCR-RFLP. Mol. Ecol. 14, 933-944. https://doi.org/10.1111/j.1365-294X.2005.02467.x
  13. Gielly, L. and Taberlet, P. (1994) The use of chloroplast DNA to resolve plant phylogenies: noncoding versus rbcL sequences. Mol. Biol. Evol. 11, 769-777.
  14. Golenberg, E. M. (1993) Evolution of a noncoding region of the chloroplast genome. Mol. Phylogenet. Evol. 2, 52-64. https://doi.org/10.1006/mpev.1993.1006
  15. Guillemette, J. G. and Lewis, P. N. (1983) Detection of subnanogram quantities of DNA and RNA on native and denaturing polyacrylamide and agarose gels by silver staining. Electrophoresis 4, 92-94. https://doi.org/10.1002/elps.1150040112
  16. Howell, E. C., Newbury, H. J., Swennen, R. L., Withers, L. A. and Ford-Lloyd, B. V. (1994) The use of RAPD for identifying and classifying Musa germplasm. Genome 37, 328-332. https://doi.org/10.1139/g94-045
  17. INIBAP (2001) Strategy for the Global Musa Genomics Consortium, Arlington, USA.
  18. INIBAP (2003) Musa Germplasm Information System: Search by Musa acuminata subspecies. http://singertk.cgiar.org/MGIS2/SearchbyAcuminataSubSpecies.htm
  19. Javadi, F. and Yamaguchi, H. (2004) Interspecific relationships of the genus Cicer L. (Fabaceae) based on trnT-F sequences. Theor. Appl. Genet. 109, 317-322.
  20. Kaemmer, D., Fischer, D., Jarret, R. L., Baurens, F. C., Grapin, A., Dambier, D., Noyer, J. L., Lanaud, C. and Kahl, G. (1997) Molecular breeding in the genus Musa: a strong case for STMS marker technology. Euphytica 96, 49-63. https://doi.org/10.1023/A:1002922016294
  21. Kelchner, S. A. and Wendel, J. F. (1996) Hairpins create minute inversions in non-coding regions of chloroplast DNA. Curr. Genet. 30, 259-262. https://doi.org/10.1007/s002940050130
  22. Kim, K.-J. and Lee, H.-L. (2004) Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 11, 247-261. https://doi.org/10.1093/dnares/11.4.247
  23. Kim, K.-J. and Lee, H.-L. (2005) Widespread occurrence of small inversions in the chloroplast genomes of land plants. Mol. Cells 19, 104-113.
  24. Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A. and Janzen, D. H. (2005) Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA 102, 8369-8374. https://doi.org/10.1073/pnas.0503123102
  25. Lebot, V., Aradhya, K. M., Manshardt, R. and Meilleur, B. (1993) Genetic relationships among cultivated bananas and plantains from Asia and the Pacific. Euphytica 67, 163-175. https://doi.org/10.1007/BF00040618
  26. Lee, C. and Wen, J. (2004) Phylogeny of Panax using chloroplast trnC–trnD intergenic region and the utility of trnC–trnD in interspecific studies of plants. Mol. Phylogen. Evol. 31, 894-903. https://doi.org/10.1016/j.ympev.2003.10.009
  27. Lesnik, E. A., Sampath, R., Levene, H. B., Henderson, T. J., McNeil, J. A. and Ecker, D. J. (2001) Prediction of rho-independent transcriptional terminators in Escherichia coli. Nucleic Acids Res. 29, 3583-3594. https://doi.org/10.1093/nar/29.17.3583
  28. McCarthy, C. (1996) Chromas. www.technelysium.com.au/chromas.html, Queensland, Australia
  29. Nicholas, K. B. and Nicholas, H. B. J. (1997) GeneDoc: a tool for editing and annotating multiple sequence alignment, distributed by the authors. www.psc.edu/biomed/genedoc.
  30. Peralta, I. E. and Spooner, D. M. (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon (Mill.) Wettst. subsection Lycopersicon). Am. J. Bot. 88, 1888-1902. https://doi.org/10.2307/3558365
  31. Rozas, J., Sanchez-DelBarrio, J., Messeguer, X. and Rozas, R. (2003) DnaSP: DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496-2497. https://doi.org/10.1093/bioinformatics/btg359
  32. Shaw, J., Lickey, E. B., Beck, J. T., Farmer, S. B., Liu, W., Miller, J., Siripun, K. C., Winder, C. T., Schilling, E. E. and Small, R. L. (2005) The tortoise and the Hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am. J. Bot. 92, 142-166. https://doi.org/10.3732/ajb.92.1.142
  33. Shepherd, K. (1990) Observations on Musa taxonomy: a note on Musa germplasm of the Philippines; in Identification of genetic diversity in the genus Musa: proceeding of an international workshop held at Los Banos, Philippines, 5-10 September 1988, Jarret, R. L. (eds.), pp. 158-165, INIBAP, Los Banos, Philippines.
  34. Silayoi, B. and Babprasert, C. (1983) Banana Genetic Resource Exploration in Thailand. Kasetsart University, Bangkok, Thailand.
  35. Simmonds, N. W. (1962) The Evolution of the Bananas, Longmans, London, Great Britain.
  36. Simmonds, N. W. (1995) Bananas; in Evolution of Crop Plants, Smartt, J. and Simmonds, N. W. (eds.), 2nd ed., pp. 370-379, Longman Scientific & Technical, Essex, England.
  37. Simmonds, N. W. and Shepherd, K. (1955) The taxonomy and origins of the cultivated bananas. J. Linn. Soc. Bot. 55, 302-312. https://doi.org/10.1111/j.1095-8339.1955.tb00015.x
  38. Sotto, R. C. and Rabara, R. C. (2000) Morphological diversity of Musa balbisiana Colla in the Philippines. InfoMusa 9, 28-30.
  39. Swofford, D. L. (2002) PAUP*: Phylogenetic analysis using parsimony (* and other methods). version 4.0b.10 for Macintosh, Sinauer Associates, Sunderland, MA, USA.
  40. Templeton, A. R., Crandall, K. A. and Sing, C. F. (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data III. Cladogram estimation. Genetics 132, 619-633.
  41. Ude, G., Pillay, M., Nwakanma, D. and Tenkouano, A. (2002) Genetic diversity in Musa acuminata Colla and Musa balbisiana Colla and some of their natural hybrids using AFLP markers. Theor. Appl. Genet. 104, 1246-1252. https://doi.org/10.1007/s00122-002-0914-4
  42. Valmayor, R. V., Jamaluddin, S. H., Silayoi, B., Kusumo, S., Danh, L. D., Pascua, O. C. and Espino, R. R. C. (2000) Banana Cultivar Names and Synonyms in Southeast Asia, International Network for the Improvement of Banana and Plantain - Asia and the Pacific Office, Los Banos, Laguna, the Philippines.
  43. Wilson, K. S. and von Hippel, P. H. (1995) Transcription termination at intrinsic terminators: The role of the RNA hairpin. Proc. Natl. Acad. Sci. USA 92, 8793-8797. https://doi.org/10.1073/pnas.92.19.8793
  44. Wong, C., Kiew, R., Loh, J. P., Gan, L. H., Lee, S. K., Ohn, S., Lum, S. and Gan, Y. Y. (2001) Genetic Diversity of the Wild Banana Musa acuminata Colla in Malaysia as evidenced by AFLP. Ann. Bot.-London 88, 1017-1025. https://doi.org/10.1006/anbo.2001.1542
  45. Zhang, W. (2000) Phylogeny of the grass family (Poaceae) from rpl16 intron sequence data. Mol. Phylogen. Evol. 15, 135-146. https://doi.org/10.1006/mpev.1999.0729
  46. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406-3415. https://doi.org/10.1093/nar/gkg595

Cited by

  1. Identification of cytoplasmic ancestor gene-pools of Musa acuminata Colla and Musa balbisiana Colla and their hybrids by chloroplast and mitochondrial haplotyping vol.118, pp.1, 2008, https://doi.org/10.1007/s00122-008-0875-3
  2. Elucidation of origin of the present day hybrid banana cultivars using the 5′ETS rDNA sequence information vol.24, pp.1, 2009, https://doi.org/10.1007/s11032-009-9273-z
  3. A multi gene sequence-based phylogeny of the Musaceae (banana) family vol.11, pp.1, 2011, https://doi.org/10.1186/1471-2148-11-103
  4. The potential of high-resolution BAC-FISH in banana breeding vol.166, pp.3, 2009, https://doi.org/10.1007/s10681-008-9830-2
  5. Development of SSR markers from Musa balbisiana for genetic diversity analysis among Thai bananas vol.302, pp.7, 2016, https://doi.org/10.1007/s00606-015-1274-2
  6. Genetic diversity and species-specific PCR-based markers from AFLP analyses of Thai bananas vol.38, pp.3, 2010, https://doi.org/10.1016/j.bse.2010.03.015
  7. The Largest Plastid Genome of Monocots: a Novel Genome Type Containing AT Residue Repeats in the Slipper Orchid Cypripedium japonicum vol.33, pp.5, 2015, https://doi.org/10.1007/s11105-014-0833-y
  8. Genetic diversity and population structure of Musa accessions in ex situ conservation vol.13, pp.1, 2013, https://doi.org/10.1186/1471-2229-13-41
  9. Evolution of small inversions in chloroplast genome: a case study from a recurrent inversion in angiosperms vol.25, pp.1, 2009, https://doi.org/10.1111/j.1096-0031.2008.00236.x
  10. Genetic variation of Kaempferia (Zingiberaceae) in Thailand based on chloroplast DNA(psbA-trnH and petA-psbJ) sequences vol.9, pp.4, 2010, https://doi.org/10.4238/vol9-4gmr873
  11. The plasmid vectors, pBS2ndd and pBS3ndd, for versatile cloning with low background in Escherichia coli vol.34, pp.6, 2018, https://doi.org/10.1007/s11274-018-2466-z