DOI QR코드

DOI QR Code

Photoinhibition Induced Alterations in Energy Transfer Process in Phycobilisomes of PS II in the Cyanobacterium, Spirulina platensis

  • Kumar, Duvvuri Prasanna (Department of Biochemistry, Sri Venkateswara University) ;
  • Murthy, Sistla D.S. (Department of Biochemistry, Sri Venkateswara University)
  • Published : 2007.09.30

Abstract

Exposure of algae or plants to irradiance from above the light saturation point of photosynthesis is known as high light stress. This high light stress induces various responses including photoinhibition of the photosynthetic apparatus. The degree of photoinhibition could be clearly determined by measuring the parameters such as absorption and fluorescence of chromoproteins. In cyanobacteria and red algae, most of the photosystem (PS) II associated light harvesting is performed by a membrane attached complex called the phycobilisome (PBS). The effects of high intensity light (1000-4000 ${\mu}mol$ photons $m^{-2}s^{-1}$) on excitation energy transfer from PBSs to PS II in a cyanobacterium Spirulina platensis were studied by measuring room temperature PC fluorescence emission spectra. High light (3000 ${\mu}mol$ photons $m^{-2}s^{-1}$) stress had a significant effect on PC fluorescence emission spectra. On the other hand, light stress induced an increase in the ratio of PC fluorescence intensity of PBS indicating that light stress inhibits excitation energy transfer from PBS to PS II. The high light treatment to 3000 ${\mu}mol$ photons $m^{-2}s^{-1}$ caused disappearance of 31.5 kDa linker polypeptide which is known to link PC discs together. In addition we observed the similar decrease in the other polypeptide contents. Our data concludes that the Spirulina cells upon light treatment causes alterations in the phycobiliproteins (PBPs) and affects the energy transfer process within the PBSs.

Keywords

References

  1. Babu, T. S., Kumar, A. and Varma, A. K. (1991) Effect of light quality on phycobilisome components of the cyanobacterium Spirulina platensis. Plant Physiol. 95, 492-497. https://doi.org/10.1104/pp.95.2.492
  2. Bald, D. (1996) Supra molecular architecture of cyanobacterial thylakoid membranes: How is the phycobilisome connected with the photosystem? Photosynth. Res. 49, 103-118. https://doi.org/10.1007/BF00117661
  3. Gantt, E. (1981) Phycobilisomes. Annu. Rev. Plant Physiol. 32, 327-347. https://doi.org/10.1146/annurev.pp.32.060181.001551
  4. Glazer, A. N. (1984) A macro molecular complex optimized for light energy transfer Biochim. Biophys Acta 768, 29-51. https://doi.org/10.1016/0304-4173(84)90006-5
  5. Glazer, A. N. (1989) Light guides. Directional energy transfer in a photosynthetic antenna. J. Biol. Chem. 264, 1-4.
  6. Gomez-Lojero, C., Perez-Gomez, B., Prado-Flores, G., Krogmann, D. W., Carabez-Trejo, A. and Pena-Diaz, A. (1997) The phycobilisomes of the cyanobacterium Arthrospira (Spirulina) maxima. Int. J. Biochem. Cell Biol. 29, 1191-1205. https://doi.org/10.1016/S1357-2725(97)00043-5
  7. Huber, R. (1989) Nobel lecture. A structural basis of light energy and electron transfer in biology. EMBO J. 8, 2125-2147.
  8. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head bacteriophage $T_4$. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  9. Lambreva, M., Stoyanova-Koleva, D., Baldjiev, G. and Tsonev, T. (2005) Early acclimation changes in the photosynthetic apparatus of bean plants during short term exposure to elevated $CO_2$ concentration under high temperature and light intensity. Agriculture, Ecosystems Environment. 106, 29-232.
  10. Li, D. H., Xie, J., Zhao, J. Q., Xia, A., Li, D. and Gong, Y. (2004) Light induced excitation energy redistribution in Spirulina platensis cells: 'spillover' or 'mobile PBSs'? Biochim. Biophys. Acta 1608, 114-121. https://doi.org/10.1016/j.bbabio.2003.11.002
  11. Lichtenthalar, H. K., Burkart,S. Schindler, C. and Stober, F. (1992) Changes in photosynthetic pigment and in vivo chlorophyll fluorescence parameters under photoinhibitory growth conditions. Photosynthetica 27, 343-353.
  12. Liu, L. N., Chen, X. L., Zhang, Y. Z. and Zhou, B. C. (2005) Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: An overview. Biochim. Biophys. Acta 1708, 133-142. https://doi.org/10.1016/j.bbabio.2005.04.001
  13. Li, Y., Zhang, J., Xie, J., Zhao, J. and Jiang, Z. (2001) Temperature induced decoupling of phycobilisomes from reaction centers. Biochim. Biophys. Acta 1504, 229-234. https://doi.org/10.1016/S0005-2728(00)00250-4
  14. Li, Y., Wang, B., Cheng, A. X., Zhang, X. K., Zhaol, J. Q. and Li, J. J. (2004) Spectroscopic investigation on the energy transfer process in photosynthetic apparatus of cyanobacteria. Spectrochimica Acta 60, 1543-1547. https://doi.org/10.1016/j.saa.2003.08.017
  15. Li, H., Li, D., Yang, S., Xie, J. and Zhao, J. (2006) The state transition mechanism- simply depending on light on and off in Spirulina platensis. Biochim. Biophys. Acta 1757, 1512-1519. https://doi.org/10.1016/j.bbabio.2006.08.009
  16. Lorimier de. K., Bryant, D. A. and Stevens, S. E. (1990) Genetic analysis of a 9-kDa phycocyanin- associated linker polypeptide. Biochim Biophys. Acta 1019, 29-41. https://doi.org/10.1016/0005-2728(90)90121-J
  17. Lundell, D. J., Williams, R. C. and Glazer, A. N. (1981) Molecular architecture of a light harvesting antenna. In vitro assembly of the rod substructures of Synechococcus 6301 phycobilisomes. J. Biol. Chem. 256, 3580-3592.
  18. MacColl, R. (1998) Cyanobacterial phycobilisomes. J. Struct. Biol. 124, 311-34. https://doi.org/10.1006/jsbi.1998.4062
  19. Murthy, S. D. S. (1991) Studies on bioenergetic processes of cyanobacteria: Analysis of the selected heavy metal ions on energy linked processes. Ph.D thesis, Jawaharlal Nehru University, New Delhi, India.
  20. Murthy, S. D. S., Venkataramanaiah, V. and Sudhir, P. (2004) Effect of high temperature on photosynthetic electron transport activities of the cyanobacterium, Spirulina platensis. Photosynthetica 41, 331-334
  21. Sacina, M., Tobin, M. J. and Mullineaux, C. W. (2001) Diffusion of phycobilisomes on the thylakoid membranes on the cyanobacterium Synechococcus 7942; Effect of phycobilisome size, temperature and membrane lipid composition. J. Biol. Chem. 276, 46830-46834. https://doi.org/10.1074/jbc.M107111200
  22. Smith, B. M., Morrissey, P. J., Guenther, J. E., Nemson, J. A., Harrison, M. A., Allen, J. F. and Melis, A. (1990) Response of the photosynthetic apparatus in Dunaliella salina (green algae) to irradiation stress. Plant Physiol. 93, 1433-1440. https://doi.org/10.1104/pp.93.4.1433
  23. Sudhir, P., Pogoryelov, D., Kovacs, L., Garab, G. and Murthy, S. D. S. (2005) The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. J. Biochem. Mol. Biol. 38, 481-485. https://doi.org/10.5483/BMBRep.2005.38.4.481
  24. Telfer, A., He, W.-Z. and Barber, J. (1990) Spectral resolution of more than one electron donor in the isolated Photosystem II reaction center. Biochim. Biophys. Acta 1017, 143-151. https://doi.org/10.1016/0005-2728(90)90145-T
  25. Wen, X., Gong, H. and Lu, C. (2005) Heat stress induces an inhibition of excitation energy transfer from phycobilisomes to Photosystem II but not Photosystem I in a cyanobacterium Spirulina maxima. Plant Physiol Biochem. 43, 389-395. https://doi.org/10.1016/j.plaphy.2005.03.001
  26. Zarrouk, C. (1996) Contribution a l'etude d'une cyanophyce influenced de diveres facters physiques et chimiques sur la croissance et la photosyntese de Spirulina maxima (Setch at Gardner) Geitler, Ph.D thesis, University of Paris.

Cited by

  1. Photosynthetic response of Nodularia spumigena to UV and photosynthetically active radiation depends on nutrient (N and P) availability vol.66, pp.2, 2008, https://doi.org/10.1111/j.1574-6941.2008.00572.x
  2. Proteomic analysis and qRT-PCR verification ofArthrospira platensisstrain YZ under dark stress vol.52, pp.6, 2013, https://doi.org/10.2216/13-167.1
  3. Comparison between modified exponential model and common models of light-response curve vol.36, pp.12, 2013, https://doi.org/10.3724/SP.J.1258.2012.01277