DOI QR코드

DOI QR Code

Site-directed Mutagenesis of Five Conserved Residues of Subunit I of the Cytochrome cbb3 Oxidase in Rhodobacter capsulatus

  • Ozturk, Mehmet (Abant zzet Baysal University, Faculty of Literature and Science, Biology Department) ;
  • Gurel, Ekrem (Abant zzet Baysal University, Faculty of Literature and Science, Biology Department) ;
  • Watmough, Nicholas J. (Center for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia) ;
  • Mandaci, Sevnur (Genetic Engineering and Biotechnology Institute, TUBITAK MRC)
  • Published : 2007.09.30

Abstract

Cytochrome $cbb_3$ oxidase is a member of the heme-copper oxidase superfamily that catalyses the reduction of molecular oxygen to the water and conserves the liberated energy in the form of a proton gradient. Comparison of the amino acid sequences of subunit I from different classes of heme-copper oxidases showed that transmembrane helix VIII and the loop between transmembrane helices IX and X contain five highly conserved polar residues; Ser333, Ser340, Thr350, Asn390 and Thr394. To determine the relationship between these conserved amino acids and the activity and assembly of the $cbb_3$ oxidase in Rhodobacter capsulatus, each of these five conserved amino acids was substituted for alanine by site-directed mutagenesis. The effects of these mutations on catalytic activity were determined using a NADI plate assay and by measurements of the rate of oxygen consumption. The consequence of these mutations for the structural integrity of the $cbb_3$ oxidase was determined by SDS-PAGE analysis of chromatophore membranes followed by TMBZ staining. The results indicate that the Asn390Ala mutation led to a complete loss of enzyme activity and that the Ser333Ala mutation decreased the activity significantly. The remaining mutants cause a partial loss of catalytic activity. All of the mutant enzymes, except Asn390Ala, were apparently correctly assembled and stable in the membrane of the R. capsulatus.

Keywords

References

  1. Adelroth, P., Gennis, R. B. and Brzezinski, P. (1998) Role of the pathway through K(I-362) in proton transfer in cytochrome c oxidase from R. sphaeroides. Biochemistry 37, 2470-2476. https://doi.org/10.1021/bi971813b
  2. Babcock, G. T. and Wikstrom, M. (1992) Oxygen activation and the conservation of energy in cell respiration. Nature 356, 301-309. https://doi.org/10.1038/356301a0
  3. Behr, J., Hellwig, P., Mäntele, W. and Michel. H. (1998) Redox dependent changes at the heme propionates in cytochrome c oxidase from Paracoccus denitrificans: Direct evidence from FTIR difference spectroscopy in combination with heme propionate $^{13}C$ labeling. Biochemistry 37, 7400-7406. https://doi.org/10.1021/bi9731697
  4. Bloch, D., Belevich, I., Jasaitis, A., Ribacka, C., Puustinen, A., Verkhovsky, M. I., and Wikstrom, M. (2004) The catalytic cycle of cytochrome c oxidase is not the sum of its two halves, Proc. Natl. Acad. Sci. USA 101, 529-533. https://doi.org/10.1073/pnas.0306036101
  5. Branden, M., Tomson, F., Gennis, R. B. and Brzezinski, P. (2002) The entry point of the K-proton-transfer pathway in cytochrome c oxidase. Biochemistry 41, 10794-10798. https://doi.org/10.1021/bi026093+
  6. Castresana, J., Lubben, M., Saraste, M. and Higgins, D. G. (1994) Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen, EMBO J. 13, 2516-2525.
  7. Daldal, F., Cheng, S., Applebaum, J., Davidson, E. and Prince, R. C. (1986) Cytochrome $c_2$ is not essential for photosynthetic growth of Rhodopseudomonas capsulate. Proc. Natl. Acad. Sci. USA 83, 2012-2016. https://doi.org/10.1073/pnas.83.7.2012
  8. de Gier, J.-W. L., Schepper, M., Reijnders, W. N. M., van Dyck, S. J., Slotboom, D. J., Warne, A., Saraste, M., Krab, K., Finel, M., Stouthamer, A. H., van Spanning, J. R. J. and van der Oost, M. (1996) Structural and functional analysis of $aa_3-type$ and $cbb_3-type$ cytochrome c oxidases of Paracoccus denitrificans reveals significant differences in proton pump design. Mol. Microbiol. 20, 1247-1260. https://doi.org/10.1111/j.1365-2958.1996.tb02644.x
  9. Ditta, G., Schmidhauser, T., Yacobson, E., Lu, P. Liang, X. W., Finlay, D. R., Guiney, D. and Helsinki, D. R. (1985) Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13, 149-153. https://doi.org/10.1016/0147-619X(85)90068-X
  10. Fetter, R. J., Qian, J., Shapleigh, J., Thomas, J. W., Gargia-Horsman, A., Schmidt, E., Hosler, J., Babcock, T. G., Gennis, R. B. and Ferguson-Miller, S. (1995) Possible proton relay pathways in cytochrome c oxidase. Prot. Natl. Acad. Sci. USA 192, 1604-1608.
  11. Garcia-Horsman, J. A., Barquera, B., Rumbley, J., Ma, J. and Gennis, R. B. (1994) The superfamily of heme-copper respiratory oxidases. J. Bacteriol. 176, 5587-5600. https://doi.org/10.1128/jb.176.18.5587-5600.1994
  12. Hosler, J. P., Shapleigh, J. P., Tecklenburg, M. M. J., Thomas, J. W., Kim, Y., Espe, M., Fetter, J., Babcock, G. T., Alben, J. O., Gennis, R. B. and Ferguson-Miller, S. (1994) A loop between transmembrane helices IX and X of subunit I of cytochrome c oxidase caps the heme a-heme $a_3-Cu_B$ center. Biochemistry 33, 1194-1201. https://doi.org/10.1021/bi00171a019
  13. Gray, K. A., Grooms, M., Myllykallio, H., Moomaw, C., Slaughter, C. and Daldal, F., (1994) Rhodobacter capsulatus contains a novel cb-type cytochrome c oxidase without a $Cu_A$ center. Biochemistry 33, 3120-3127. https://doi.org/10.1021/bi00176a047
  14. Hosler, J. P., Shapleigh, J. P., Mitchell, D. H., Kim, Y., Pressler, M. A., Georgiou, C., Babcock, G. T., Alben, J. O., Ferguson-Miller, S. and Gennis, R. B. (1996) Polar Residues in Helix VIII of subunit I of cytochrome c oxidase influence the activity and the structure of the active site. Biochemistry 33, 10776-10783.
  15. Iwata, S., Ostermeier, C., Ludwig, B. and Michel, H. (1995). Structure at $2.8{\AA}$ resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376, 660-669. https://doi.org/10.1038/376660a0
  16. Jenney, F. E. and Daldal, F. (1993) A novel membrane-associated c-type cytochrome, cyt $c_y$ can mediate the photosynthetic growth of Rhodobacter capsulatus and Rhodobacter sphaeroides. EMBO J. 12, 1283-1292.
  17. Jenney, F. E., Prince, R. C. and Daldal, F. (1994) Roles of the soluble cytochrome $c_2$ and membrane-associated cytochrome $c_y$ of Rhodobacter capsulatus in photosynthetic electron transfer. Biochemistry 33, 2496-2502. https://doi.org/10.1021/bi00175a019
  18. Junemann, S., Meunier, B. and Gennis, R. B. (1997) Effects of mutation of the conserved lysine-362 in cytochrome c oxidase from Rhodobacter sphaeroides. Biochemistry 36, 14456-14464. https://doi.org/10.1021/bi971458p
  19. Keilin, D. (1966) The History of Cell Respiration and Cytochrome (Cambridge University Press, Cambridge).
  20. Koch, H. G., Hwang, O. and Daldal, F. (1998) Isolation and characterization of Rhodobacter capsulatus mutants affected in cytochrome $cbb_3$ oxidase activity. J. Bacteriol. 180, 969-978.
  21. Konstantinov, A. A., Siletsky, S., Mitchell, D., Kaulen, A. and Gennis, R. B. (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer, Proc. Natl. Acad. Sci. USA 94, 9085-9090. https://doi.org/10.1073/pnas.94.17.9085
  22. Lowry, O. H., Rosebrough, N. J., Farr A. L. and Randall, R. J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275.
  23. Malatesta, F., Antonini, G., Sarti, P. and Brunori, M. (1995) Structure and function of a molecular machine-cytochrome c oxidase. Biophys. Chem. 54, 1-33. https://doi.org/10.1016/0301-4622(94)00117-3
  24. Mills, D. A., Florens, L., Hiser, C., Qian, J. and Ferguson-Miller, S. (2000) Where is `outside' in cytochrome c oxidase and how and when do protons get there? Biochim. Biophys. Acta 1458, 180-187. https://doi.org/10.1016/S0005-2728(00)00067-0
  25. Myllykallio, H. and Liebl, U. (2000) Dual role for cytochrome $cbb_3$ oxidase in clinically relevant proteobacteria. Trends Microbiol. 8, 542-543. https://doi.org/10.1016/S0966-842X(00)91831-6
  26. Oh, J. I. (2006) Effects of five conserved histidine residues in the catalytic subunit of the cytochrome c oxidase on its function. J. Microbiol. 44, 284-292.
  27. Ostermeier, C., Harrenga, A., Ermler, U. and Michel, H. (1997) Structure at 2.7 A resolution of the Paracoccus denitrificans two-subunit cytochrome oxidase complexed with an antibody Fv fragment. Proc. Natl. Acad. Sci. USA 94, 10547-10553. https://doi.org/10.1073/pnas.94.20.10547
  28. Ozturk, M. and Mandaci, S. (2006) Two conserved non-canonical histidines are essential for activity of the $cbb_3-type$ oxidase in Rhodobacter capsulatus. Mol. Biol. Rep. DOI:10.1007/s11033-006-9031-9.
  29. Pereira, M. M., Santana, M. and Tixeira, M. (2001) A novel scenario for the evolution of heme-copper oxygen reductases. Biochim. Biophys. Acta 1505, 185-208. https://doi.org/10.1016/S0005-2728(01)00169-4
  30. Pitcher, R. S., Cheesman, M. R. and Watmough, N. J. (2002) Molecular and spectroscopic analysis of the cytochrome cbb3 oxidase from Pseudomonas stutzeri, J. Biol. Chem. 277, 31474-31483. https://doi.org/10.1074/jbc.M204103200
  31. Pitcher, R. S. and Watmough, N. J. (2004) The bacterial cytochrome $cbb_3$ oxidases. Biochim. Biophys. Acta 1655, 388-399. https://doi.org/10.1016/j.bbabio.2003.09.017
  32. Pfitzner, U., Hoffmeier, K., Harrenga., Kannt, A., Hartmut, M., Bamberg, E., Oliver, M., Richter, H. and Ludwig, B. (2000) Tracing the D-pathway in reconstituted site-directed mutants of cytochrome c oxidase from Paracoccus denitrificans. Biochemistry 39, 6756-6762. https://doi.org/10.1021/bi992235x
  33. Pfitzner, U., Odenwald, A., Ostermann, T., Weingard, L., Ludwig, B. and Richter, O.-M.H. (1998) Cytochrome c oxidase (Heme $aa_3$) from Paracoccus denitrificans: Analysis of mutations in putative proton channels of subunit I. Bioenerg. Biomebr. 30, 80-89.
  34. Preisig, O., Anthamatten, D. and Hennecke, H. (1993) Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc. Natl. Acad. Sci. USA 90, 3309-3313. https://doi.org/10.1073/pnas.90.8.3309
  35. Preisig, O., Zufferey, R., Thony-Meyer, L., Appleby, C. A. and Hennecke, H. (1996) A high affinity $cbb_3-type$ cytochrome oxidase terminates the symbiosis specific respiratory chain of Bradyrhizobium japonicum. J. Bacteriol. 178, 1532-1538. https://doi.org/10.1128/jb.178.6.1532-1538.1996
  36. Qian, J., Shi, W., Pressler, M., Hoganson, C., Mills, D., Babcock, G. T. and Ferguson-Miller, S. (1997) Aspartate-407 in Rhodobacter sphaeroides cytochrome c oxidase is not required for proton pumping or manganese binding. Biochemistry 36, 2539-2543. https://doi.org/10.1021/bi962721+
  37. Rauhamaki, V., Baumann, M., Soliymani, R., Puustinen, A., Wikstrom, M. (2006). Identification of a histidine-tyrosine cross-link in the active site of the $cbb_3-type$ cytochrome c oxidase from Rhodobacter sphaeroides PNAS, doi/10.1073/pnas.0606254103.
  38. Sambrook, J., Fritsch, E. F and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press , New York, USA.
  39. Schagger, H. and von Jagow, G. (1987) Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368-379. https://doi.org/10.1016/0003-2697(87)90587-2
  40. Schultz, B. and Chan, S. (2001) Structures and proton-pomping stratagies of mitochondrial respiratory enzymes. Annu. Rev. Biophys. Biomol. Struct. 30, 23-65. https://doi.org/10.1146/annurev.biophys.30.1.23
  41. Sharma, V., Puustinen, A., Wikstrom, M. and Laakkonen, L. (2006) Sequence analysis of the $cbb_3$ oxidases and an atomic model for the Rhodobacter sphaeroides enzyme. Biochemistry 45, 5754-5765. https://doi.org/10.1021/bi060169a
  42. Sistrom, W. (1960) A requirement for sodium in the growth of Rhodopseudomonas sphaeroides. J. Gen. Microbiol. 22, 778-785. https://doi.org/10.1099/00221287-22-3-778
  43. Svensson-Ek, M., Abramson, J., Larsson, G., Tornroth, S., Brzezinski, P. and Iwata, S. (2002) The X-ray crystal structures of wild type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J. Mol. Biol. 321, 329-339. https://doi.org/10.1016/S0022-2836(02)00619-8
  44. Thomas, P. E., Ryan, D. and Levin, W. (1976) An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal. Biochem. 75, 168-176. https://doi.org/10.1016/0003-2697(76)90067-1
  45. Thomas, J. W., Lemieux, L. J., Alben, J. O. and Gennis, R. B. (1993) Site-directed mutagenesis of highly conserved residues in helix VIII of subunit I of the cytochrome bo ubiquinol oxidase from Escherichia coli: An amphipathic transmembrane helix that may be important in conveying protons to the binuclear center. Biochemistry 32, 1173-11180.
  46. Toledo-Cuevas, M., Barquera, B., Gennis, R. B., Wikstrom, M. and Garcia-Horsman, J. A. (1998) The $cbb_3-type$ cytochrome c oxidase from Rhodobacter sphaeroides a proton-pumping heme-copper oxidase. Biochem. Biophys. Acta 1365, 421-434 https://doi.org/10.1016/S0005-2728(98)00095-4
  47. Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T. and Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R. and Yoshikawa, S. (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 ${\AA}$. Science 272, 1136-1144. https://doi.org/10.1126/science.272.5265.1136
  48. Vanderoost, J., Deboer, A. and Degier, J. (1994) The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase. FEMS Microbiol. Lett. 121, 1-9. https://doi.org/10.1111/j.1574-6968.1994.tb07067.x
  49. Yhosikawa, S., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., Yamashita, E., Inoue, N., Yao, M., Fei, M. J., Libeu, C. P., Mizushima, T., Yamaaguchi, H., Tomizaki, T. and Tshukihara, T. (1998) Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280, 1723-1729. https://doi.org/10.1126/science.280.5370.1723
  50. Zaslavsky, D. and Gennis, R. B. (2000) Proton pumping by cytochrome oxidase: progress, problems and postulates. Biochim. Biophys. Acta 1458, 164-179. https://doi.org/10.1016/S0005-2728(00)00066-9
  51. Zufferey, R., Preisig, O., Hennecke, H. and Thony-Meyer, L. (1996) Assembly and function of the cytochrome $cbb_3$ oxidase subunits in Bradyrhizobium japonicum. J. Biol. Chem. 271, 9114-9119. https://doi.org/10.1074/jbc.271.15.9114
  52. Zufferey, R., Arslan, E., Toney-Mayer, L. and Hennecke, H. (1998) How replacements of the 12 conserved histidines of subunit I affect assembly, cofactor binding, and enzymatic activity of the Bradyrhizobium japonicum $cbb_3-type$ oxidase. J. Biol. Chem. 273, 6452-6459. https://doi.org/10.1074/jbc.273.11.6452

Cited by

  1. Functional proton transfer pathways in the heme–copper oxidase superfamily vol.1817, pp.4, 2012, https://doi.org/10.1016/j.bbabio.2011.10.007
  2. Mutagenesis of tyrosine residues within helix VII in subunit I of the cytochrome cbb 3 oxidase from Rhodobacter capsulatus vol.38, pp.5, 2011, https://doi.org/10.1007/s11033-010-0437-z
  3. Dynamic water networks in cytochrome cbb3 oxidase vol.1817, pp.5, 2012, https://doi.org/10.1016/j.bbabio.2011.09.010