DOI QR코드

DOI QR Code

Isolation and Characterization of Mouse Testis Specific Serine/Threonine Kinase 5 Possessing Four Alternatively Spliced Variants

  • Wei, Youheng (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University) ;
  • Fu, Guolong (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University) ;
  • Hu, Hairong (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University) ;
  • Lin, Gang (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University) ;
  • Yang, Jingchun (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University) ;
  • Guo, Jinhu (Department of Physiology, UTSouthwestern Medical Center at Dallas, University of Texas) ;
  • Zhu, Qiquan (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University) ;
  • Yu, Long (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University)
  • Published : 2007.09.30

Abstract

Phosphorylation on serine/threonine or tyrosine residues of target proteins is an essential and significant regulatory mechanism in signal transduction during many cellular and life processes, including spermatogenesis, oogenesis and fertilization. In the present work, we reported the isolation and characterization of mouse testis-specific serine/threonine kinase 5 (Tssk5), which contains four alternatively spliced variants including, Tssk5$\alpha$, Tssk5$\beta$, Tssk5$\gamma$ and Tssk5$\delta$. Moreover, the locus of Tssk5 is on chromosome 14qC3 and the four variants had a similar high expression in the testis and the heart; however, had a low expression in other tissues, except for Tssk5$\alpha$ which also had comparably high expression in the spleen. Each variant of Tssk5 expression began in the testis 16 days after birth. Aside from TSSK5$\alpha$, the other isoforms have an insertion of ten amino acid residues (RLTPSLSAAG) in region VIb (HRD domain) (His-Arg-Asp). Moreover, only TSSK5$\alpha$ exhibited kinase activity and consistently, a further Luciferase Reporter Assay demonstrated that TSSK5$\beta$, TSSK5$\gamma$ and TSSK5$\delta$ cannot be stimulated at the CREB/CRE responsive pathway in comparison to TSSK5$\alpha$. These findings suggest that TSSK5$\beta$, TSSK5$\gamma$, TSSK5$\delta$ may be pseudokinases due to the insertion, which may damage the structure responsible for active kinase activity. Pull-down assay experiments indicated that TSSK5$\beta$, TSSK5 $\gamma$ and TSSK5$\delta$ can directly interact with TSSK5$\alpha$. In summary, these four isoforms with similar expression patterns may be involved in spermatogenesis through a coordinative way in testis.

Keywords

References

  1. Alessi D. R., Sakamoto K. and Bayascas J. R. (2006) LKB1-dependent signaling pathways. Annu. Rev. Biochem. 75, 137-163. https://doi.org/10.1146/annurev.biochem.75.103004.142702
  2. Baas, A. F., Boudeau, J., Sapkota, G. P., Smit, L., Medema, R., Morrice, N. A., Alessi, D. R. and Clevers, H. C. (2003) Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO. J. 22, 3062-3072. https://doi.org/10.1093/emboj/cdg292
  3. Bielke, W., Blaschke, R. J., Miescher, G. C., Zurcher, G., Andres, A. C. and Ziemiecki, A. (1994) Characterization of a novel murine testis-specific serine/threonine kinase. Gene (Amst). 139, 235-239. https://doi.org/10.1016/0378-1119(94)90762-5
  4. Boudeau, J., Saavedra, D. M., Barton, G. J. and Alessi, D. R. (2006) Emerging roles of pseudokinases. Trends in Cell Biol. 16, 443-452. https://doi.org/10.1016/j.tcb.2006.07.003
  5. Boudeau, J., Scott, J. W., Resta, N., Deak, M., Kieloch, A., Komander, D., Hardie, D. G., Prescott, A. R., Van Aalten, D. M. and Alessi, D. R. (2004) Analysis of the LKB1-STRADMO25 complex. J. Cell Sci. 117, 6365-6375. https://doi.org/10.1242/jcs.01571
  6. Caenepeel, S., Charydczak, G., Sudarsanam, S., Hunter, T. and Manning, G. (2004) The mouse kinome: discovery and comparative genomics of all mouse protein kinases. Proc. Natl. Acad. Sci. USA 101, 11707-11712. https://doi.org/10.1073/pnas.0306880101
  7. Chen, X. J., Lin, G., Wei, Y. H., Hexige, S. Y., Niu, Y. J., Liu, L. L., Yang, C. Y. and Yu, L. (2005) TSSK5, a novel member of the testis-specific serine/threonine kinase family, phosphorylates CREB at Ser-133, and stimulates the CRE/CREB responsive pathway. Biochem. Biophys. Res. Commun. 333, 742-749.
  8. Hanks, S. K. (1991) Eukaryotic protein kinases. Curr Opin. Struct. Biol. 1, 369-383 https://doi.org/10.1016/0959-440X(91)90035-R
  9. Hanks, S. K. and Hunter, T. (1995) The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB. J. 9, 576-596. https://doi.org/10.1096/fasebj.9.8.7768349
  10. Hanks S. K. and Quin, A. M. (1991) Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol 200, 38-62. https://doi.org/10.1016/0076-6879(91)00126-H
  11. Hanks, S. K., Quin, A. M. and Hunter, T. (1998) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241, 42-52. https://doi.org/10.1126/science.3291115
  12. Hao, Z., Jha, K. N., Kim, Y. H., Vemuganti, S., Westbrook, V. A., Chertihin, O., Markgraf, K., Flickinger, C. J., Coppola, M., Herr, J. C. and Visconti, P. E. (2004) Expression analysis of the human testis-specific serine/threonine kinase (TSSK) homologues. A TSSK member is present in the equatorial segment of human sperm. Mol. Hum. Reprod. 10, 433-444. https://doi.org/10.1093/molehr/gah052
  13. Jinno, A., Tanaka, K., Matsushime, H., Haneji, T. and Shibuya, M. (1993) Testis-specific mak protein kinase is expressed specifically in the meiotic phase in spermatogenesis and is associated with a 210-kilodalton cellular phosphoprotein. Mol. Cell. Biol. 13, 4146-4156. https://doi.org/10.1128/MCB.13.7.4146
  14. Kueng, P., Nikolova, Z., Djonov, V., Hemphill, A., Rohrbach, V., Boehlen, D., Zuercher G., Andres, A. C. and Ziemiecki, A. (1997) A novel family of serine/threonine kinases participating in spermiogenesis. J. Cell Biol. 139, 1851-1859. https://doi.org/10.1083/jcb.139.7.1851
  15. Luo, H., Rose, P., Barber, D., Hanratty, W. P., Lee, S., Roberts, T. M. and Andrea, A. D. (1997) Dearolf C.R., Mutation in the Jak kinase JH2 domain huperactivates Drosophila and mammalian Jak-Stat pathways. Mol. Cell. Biol. 17, 1562-1571. https://doi.org/10.1128/MCB.17.3.1562
  16. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. and Sudarsanam, S. (2002) The protein kinase complement of the human genome. Science 298, 1912-1934. https://doi.org/10.1126/science.1075762
  17. Matsushime, H., Jinno, A., Takagi, N. and Shibuya, M. (1990) A novel mammalian protein kinase gene (mak) is highly expressed in testicular germ cells at and after meiosis. Mol. Cell. Biol. 10, 2261-2268. https://doi.org/10.1128/MCB.10.5.2261
  18. Saharinen, P., Vihinen, M. and Silvennoinen, O. (2003) Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Mol. Biol. Cell 14, 1448-1459. https://doi.org/10.1091/mbc.E02-06-0342
  19. Toshima, J., Koji, T. and Mizuno, K. (1998) Stage-specific expression of testis-specific protein kinase 1 (TESK1) in rat spermatogenic cells. Biochem. Biophys. Res. Commun. 249, 107-112. https://doi.org/10.1006/bbrc.1998.9099
  20. Toshima, J., Ohashi, K., Okano, I., Nunoue, K., Kishioka, M., Kuma, K., Miyata, T., Hirai, M., Baba, T. and Minzuno, K. (1995) Identification and characterization of a novel protein kinase, tesk1, specifically expressed in testicular germ cells. J. Biol. Chem. 270, 31331-31337. https://doi.org/10.1074/jbc.270.52.31331
  21. Visconti, P. E., Hao, Z., Purdon, M. A., Stein, P., Balsara, B. R., Testa, J. R., Herr, J. C., Moss, S. B. and Kopf. G. S. (2001) Cloning and chromosomal localization of a gene encoding a novel serine/threonine kinase belonging to the subfamily of testis-specific kinases. Genomics 77, 163-170. https://doi.org/10.1006/geno.2001.6628
  22. Walden, P. D. and Cowan, N. J. (1993) A novel 205-kilodalton testis-specific serine/threonine protein kinase associated with microtubules of the spermatid manchette. Mol Cell Biol. 13, 7625-7635. https://doi.org/10.1128/MCB.13.12.7625
  23. Wang, Z. Q. and Herceg, Z. (2005) Rendez-vous at mitosis: TRRAPed in the chromatin. Cell Cycle 4, 383-387. https://doi.org/10.4161/cc.4.3.1546
  24. Walden, P. D. and Millette, C. F. (1996) Increased activity associated with the MAST205 protein kinase complex during mammalian spermiogenesis. Biol Reprod. Nov. 55, 1039-1044. https://doi.org/10.1095/biolreprod55.5.1039
  25. Zuercher, G., Rohrbach, V., Andres, A. C. and Ziemiecki, A. (2000) A novel member of the testis specific serine kinase family, tssk-3, expressed in the Leydig cells of sexually mature mice. Mech. Dev. 93, 175-177. https://doi.org/10.1016/S0925-4773(00)00255-0

Cited by

  1. Enhanced resveratrol accumulation in rolB transgenic cultures of Vitis amurensis correlates with unusual changes in CDPK gene expression vol.166, pp.11, 2009, https://doi.org/10.1016/j.jplph.2009.01.006
  2. Characterization, expression, and functional analysis of testis-specific serine/threonine kinase 1 (Tssk1) in the pen shellAtrina pectinata vol.60, pp.2, 2016, https://doi.org/10.1080/07924259.2016.1161667
  3. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: Developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane 2009, https://doi.org/10.1002/jemt.20784
  4. Testis specific serine/threonine kinase 4 (Tssk4) maintains its kinase activity by phosphorylating itself at Thr-197 vol.40, pp.1, 2013, https://doi.org/10.1007/s11033-012-2078-x
  5. CDPK gene expression in somatic embryos of Panax ginseng expressing rolC vol.99, pp.2, 2009, https://doi.org/10.1007/s11240-009-9586-y
  6. Seasonal effect on sperm messenger RNA profile of domestic swine (Sus Scrofa) vol.119, pp.1-2, 2010, https://doi.org/10.1016/j.anireprosci.2009.12.002
  7. Function of alternative splicing vol.514, pp.1, 2013, https://doi.org/10.1016/j.gene.2012.07.083
  8. Phosphorylated testis-specific serine/threonine kinase 4 may phosphorylate Crem at Ser-117 vol.80, pp.6, 2016, https://doi.org/10.1080/09168451.2016.1146067