DOI QR코드

DOI QR Code

Proteomic Analysis of O-GlcNAc Modifications Derived from Streptozotocin and Glucosamine Induced β-cell Apoptosis

  • Park, Jung-Eun (College of Medicine, Seoul National University) ;
  • Kwon, Hye-Jin (College of Medicine, Seoul National University) ;
  • Kang, Yup (Insitute for Medical Sciences, Ajou University School of Medicine) ;
  • Kim, Young-Soo (College of Medicine, Seoul National University)
  • Published : 2007.11.30

Abstract

The post-translational modifications of Ser and Thr residues by O-linked $\beta$-N-acetylglucosamine (O-GlcNAc), i.e., O-GlcNAcylation, is considered a key means of regulating signaling, in a manner analogous to protein phosphorylation. Furthermore, it has been suggested that the increased flux of glucose through the hexosamine biosynthetic pathway (HBP) stimulates O-GlcNAcylation, and that this may be responsible for many of the manifestations of type 2 diabetes mellitus. To determine whether excessive O-GlcNAcylation of target proteins results in pancreatic $\beta$ cell dysfunction, we increased nucleocytoplasmic protein O-GlcNAcylation levels in $\beta$ cells by exposing them to streptozotocin and/or glucosamine. Streptozotocin and glucosamine co-treatment increased O-GlcNAcylated proteomic patterns as assessed by immunoblotting, and these increases in nuclear and cytoplasmic protein O-GlcNAcylations were accompanied by impaired insulin secretion and enhanced apoptosis in pancreatic $\beta$ cells. This observed $\beta$cell dysfunction prompted us to examine Akt and Bcl-2 family member proteins to determine which proteins are O-GlcNAcylated under conditions of high HBP throughput, and how these proteins are associated with $\beta$ cell apoptosis. Eventually, we identified ten new O-GlcNAcylated proteins that were expressed during $\beta$ cell apoptosis, and analyzed the functional implications of these proteins in relation to pancreatic $\beta$ cell dysfunction.

Keywords

References

  1. Akimoto, Y., Hart, G. W., Hirano, H. and Kawakami, H. (2005) OGlcNAc modification of nucleocytoplasmic proteins and diabetes. Med. Mol. Morphol. 38, 84-91. https://doi.org/10.1007/s00795-004-0264-1
  2. Akimoto, Y., Hart, G. W., Wells, L., Vosseller, K., Yamamoto, K., Munetomo, E., Ohara-Imaizumi, M., Nishiwaki, C., Nagamatsu, S., Hirano, H. and Kawakami, H. (2007) Elevation of the posttranslational modification of proteins by O-linked Nacetylglucosamine leads to deterioration of the glucose-stimulated insulin secretion in the pancreas of diabetic Goto-Kakizaki rats. Glycobiology 17, 127-140. https://doi.org/10.1093/glycob/cwl067
  3. Arias, E. B., Kim, J. and Cartee, G. D. (2004) Prolonged incubation in PUGNAc results in increased protein O-Linked glycosylation and insulin resistance in rat skeletal muscle. Diabetes 53, 921-930. https://doi.org/10.2337/diabetes.53.4.921
  4. Asfari, M., Janjic, D., Meda, P., Li, G., Halban, P. A. and Wollheim, C. B. (1992) Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 130, 167-178. https://doi.org/10.1210/en.130.1.167
  5. Castegna, A., Aksenov, M., Thongboonkerd, V., Klein, J. B., Pierce, W. M., Booze, R., Markesbery, W. R. and Butterfield, D. A. (2002) Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J. Neurochem. 82, 1524-1532. https://doi.org/10.1046/j.1471-4159.2002.01103.x
  6. Comer, F. I. and Hart, G. W. (2000) O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and Ophosphate. J. Biol. Chem. 275, 29179-29182. https://doi.org/10.1074/jbc.R000010200
  7. D'Alessandris, C., Andreozzi, F., Federici, M., Cardellini, M., Brunetti, A., Ranalli, M., Del Guerra, S., Lauro, D., Del Prato, S., Marchetti, P., Lauro, R. and Sesti, G. (2004) Increased Oglycosylation of insulin signaling proteins results in their impaired activation and enhanced susceptibility to apoptosis in pancreatic beta-cells. FASEB J. 18, 959-961. https://doi.org/10.1096/fj.03-0725fje
  8. Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y. and Greenberg, M. E. (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231-241. https://doi.org/10.1016/S0092-8674(00)80405-5
  9. Dowling, P., O'Driscoll, L., O'Sullivan, F., Dowd, A., Henry, M., Jeppesen, P. B., Meleady, P. and Clynes, M. (2006) Proteomic screening of glucose-responsive and glucose non-responsive MIN-6 beta cells reveals differential expression of proteins involved in protein folding, secretion and oxidative stress. Proteomics 6, 6578-6587. https://doi.org/10.1002/pmic.200600298
  10. Gandy, J. C., Rountree, A. E. and Bijur, G. N. (2006) Akt1 is dynamically modified with O-GlcNAc following treatments with PUGNAc and insulin-like growth factor-1. FEBS Lett. 580, 3051-3058. https://doi.org/10.1016/j.febslet.2006.04.051
  11. Gao, Y., Wells, L., Comer, F. I., Parker, G. J. and Hart, G. W. (2001) Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-acetylglucosaminidase from human brain. J. Biol. Chem. 276, 9838-9845. https://doi.org/10.1074/jbc.M010420200
  12. Guinez, C., Losfeld, M. E., Cacan, R., Michalski, J. C. and Lefebvre, T. (2006) Modulation of HSP70 GlcNAc-directed lectin activity by glucose availability and utilization. Glycobiology 16, 22-28. https://doi.org/10.1093/glycob/cwj041
  13. Haggie, P. M. and Verkman, A. S. (2002) Diffusion of tricarboxylic acid cycle enzymes in the mitochondrial matrix in vivo. Evidence for restricted mobility of a multienzyme complex. J. Biol. Chem. 277, 40782-40788. https://doi.org/10.1074/jbc.M207456200
  14. Haltiwanger, R. S., Grove, K. and Philipsberg, G. A. (1998) Modulation of O-linked N-acetylglucosamine levels on nuclear and cytoplasmic proteins in vivo using the peptide O-GlcNAcbeta- N-acetylglucosaminidase inhibitor O-(2-acetamido-2-deoxy- D-glucopyranosylidene)amino-N-phenylcarbamate. J. Biol. Chem. 273, 3611-3617. https://doi.org/10.1074/jbc.273.6.3611
  15. Hanover, J. A., Lai, Z., Lee, G., Lubas, W. A. and Sato, S. M. (1999) Elevated O-linked N-acetylglucosamine metabolism in pancreatic beta-cells. Arch. Biochem. Biophys. 362, 38-45. https://doi.org/10.1006/abbi.1998.1016
  16. Hsu, S. Y., Kaipia, A., Zhu, L. and Hsueh, A. J. (1997) Interference of BAD (Bcl-XL/Bcl-2-associated death promoter)-induced apoptosis in mammalian cells by 14-3-3 isoforms and P11. Mol. Endocrinol. 11, 1858-1867. https://doi.org/10.1210/me.11.12.1858
  17. Hsu, S. Y., Lin, P. and Hsueh, A. J. (1998) BOD (Bcl-2-related ovarian death gene) is an ovarian BH3 domain-containing proapoptotic Bcl-2 protein capable of dimerization with diverse antiapoptotic Bcl-2 members. Mol. Endocrinol. 12, 1432-1440. https://doi.org/10.1210/me.12.9.1432
  18. Jackson, S. P. and Tjian, R. (1988) O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell 55, 125-133. https://doi.org/10.1016/0092-8674(88)90015-3
  19. Kandel, E. S. and Hay, N. (1999) The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp. Cell. Res. 253, 210-229. https://doi.org/10.1006/excr.1999.4690
  20. Kim, H. S., Kim, E. M., Lee, J., Yang, W. H., Park, T. Y., Kim, Y. M. and Cho, J. W. (2006) Heat shock protein 60 modified with Olinked N-acetylglucosamine is involved in pancreatic beta-cell death under hyperglycemic conditions. FEBS Lett. 580, 2311-2316. https://doi.org/10.1016/j.febslet.2006.03.043
  21. Konrad, R. J., Mikolaenko, I., Tolar, J. F., Liu, K. and Kudlow, J. E. (2001) The potential mechanism of the diabetogenic action of streptozotocin: inhibition of pancreatic beta-cell O-GlcNAcselective N-acetyl-beta-D-glucosaminidase. Biochem. J. 356, 31-41. https://doi.org/10.1042/0264-6021:3560031
  22. Kreppel, L. K., Blomberg, M. A. and Hart, G. W. (1997) Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J. Biol. Chem. 272, 9308-9315. https://doi.org/10.1074/jbc.272.14.9308
  23. Liu, K., Paterson, A. J., Chin, E. and Kudlow, J. E. (2000) Glucose stimulates protein modification by O-linked GlcNAc in pancreatic beta cells: linkage of O-linked GlcNAc to beta cell death. Proc. Natl. Acad. Sci. USA 97, 2820-2825. https://doi.org/10.1073/pnas.97.6.2820
  24. Love, D. C. and Hanover, J. A. (2005) The hexosamine signaling pathway: deciphering the 'O-GlcNAc code'. Sci STKE 312, 13.
  25. Marshall, S., Bacote, V. and Traxinger, R. R. (1991) Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem. 266, 4706-4712.
  26. Marshall, S., Nadeau, O. and Yamasaki, K. (2004) Dynamic actions of glucose and glucosamine on hexosamine biosynthesis in isolated adipocytes: differential effects on glucosamine 6-phosphate, UDP-N-acetylglucosamine, and ATP levels. J. Biol. Chem. 279, 35313-35319. https://doi.org/10.1074/jbc.M404133200
  27. McClain, D. A. (2002) Hexosamines as mediators of nutrient sensing and regulation in diabetes. J. Diabetes Complications 16, 72-80. https://doi.org/10.1016/S1056-8727(01)00188-X
  28. Ottilie, S., Diaz, J. L., Horne, W., Chang, J., Wang, Y., Wilson, G., Chang, S., Weeks, S., Fritz, L. C. and Oltersdorf, T. (1997) Dimerization properties of human BAD. Identification of a BH-3 domain and analysis of its binding to mutant Bcl-2 and Bcl-XL proteins. J. Biol. Chem. 272, 30866-30872. https://doi.org/10.1074/jbc.272.49.30866
  29. Park, J., Kim, S., Oh, J. K., Kim, J. Y., Yoon, S. S., Lee, D. and Kim, Y. (2005) Identification of differentially expressed proteins in imatinib mesylate-resistant chronic myelogenous cells. J. Biochem. Mol. Biol. 38, 725-738. https://doi.org/10.5483/BMBRep.2005.38.6.725
  30. Perreira, M., Kim, E. J., Thomas, C. J. and Hanover, J. A. (2006) Inhibition of O-GlcNAcase by PUGNAc is dependent upon the oxime stereochemistry. Bioorg. Med. Chem. 14, 837-846. https://doi.org/10.1016/j.bmc.2005.09.013
  31. Roos, M. D., Xie, W., Su, K., Clark, J. A., Yang, X., Chin, E., Paterson, A. J. and Kudlow, J. E. (1998) Streptozotocin, an analog of N-acetylglucosamine, blocks the removal of O-GlcNAc from intracellular proteins. Proc. Assoc. Am. Physicians 110, 422-432.
  32. Tang, J., Neidigh, J. L., Cooksey, R. C. and McClain, D. A. (2000) Transgenic mice with increased hexosamine flux specifically targeted to beta-cells exhibit hyperinsulinemia and peripheral insulin resistance. Diabetes 49, 1492-1499. https://doi.org/10.2337/diabetes.49.9.1492
  33. Vosseller, K., Wells, L., Lane, M. D. and Hart, G. W. (2002) Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes. Proc. Natl. Acad. Sci.USA 99, 5313-5318. https://doi.org/10.1073/pnas.072072399
  34. Waeber, G., Calandra, T., Roduit, R., Haefliger, J. A., Bonny, C., Thompson, N., Thorens, B., Temler, E., Meinhardt, A., Bacher, M., Metz, C. N., Nicod, P. and Bucala, R. (1997) Insulin secretion is regulated by the glucose-dependent production of islet beta cell macrophage migration inhibitory factor. Proc. Natl. Acad. Sci. USA 94, 4782-4787. https://doi.org/10.1073/pnas.94.9.4782
  35. Walgren, J. L., Vincent, T. S., Schey, K. L. and Buse, M. G. (2003) High glucose and insulin promote O-GlcNAc modification of proteins, including alpha-tubulin. Am. J. Physiol. Endocrinol. Metab. 284, 424-434. https://doi.org/10.1152/ajpendo.00382.2002
  36. Zachara, N. E. and Hart, G. W. (2006) Cell signaling, the essential role of O-GlcNAc! Biochim. Biophys. Acta 1761, 599-617. https://doi.org/10.1016/j.bbalip.2006.04.007
  37. Zappia, M., Manna, I., Serra, P., Cittadella, R., Andreoli, V., La Russa, A., Annesi, F., Spadafora, P., Romeo, N., Nicoletti, G., Messina, D., Gambardella, A. and Quattrone, A. (2004) Increased risk for Alzheimer disease with the interaction of MPO and A2M polymorphisms. Arch. Neurol. 61, 341-344. https://doi.org/10.1001/archneur.61.3.341

Cited by

  1. Mechanisms contributing to the reduced developmental competence of glucosamine-exposed mouse oocytes vol.22, pp.5, 2010, https://doi.org/10.1071/RD09193
  2. Mitochondrial ATP synthase activity is impaired by suppressedO-GlcNAcylation in Alzheimer's disease vol.24, pp.22, 2015, https://doi.org/10.1093/hmg/ddv358
  3. Differential Proteome Profiling Using iTRAQ in Microalbuminuric and Normoalbuminuric Type 2 Diabetic Patients vol.2012, 2012, https://doi.org/10.1155/2012/168602
  4. O-GlcNAcylation: a novel post-translational mechanism to alter vascular cellular signaling in health and disease: focus on hypertension vol.3, pp.6, 2009, https://doi.org/10.1016/j.jash.2009.09.004
  5. Characterization of O-GlcNAc cycling and proteomic identification of differentially O-GlcNAcylated proteins during G1/S transition vol.1820, pp.12, 2012, https://doi.org/10.1016/j.bbagen.2012.08.024
  6. Molecular Targets for Diabetes Mellitus-associated Erectile Dysfunction vol.9, pp.3, 2010, https://doi.org/10.1074/mcp.M900286-MCP200
  7. Multiplexed Detection of O-GlcNAcome, Phosphoproteome, and Whole Proteome within the Same Gel vol.5, 2014, https://doi.org/10.3389/fendo.2014.00184
  8. Verification of Multimarkers for Detection of Early Stage Diabetic Retinopathy Using Multiple Reaction Monitoring vol.12, pp.3, 2013, https://doi.org/10.1021/pr3012073
  9. O-GlcNAc modification of proteins affects volume regulation in Jurkat cells vol.39, pp.8, 2010, https://doi.org/10.1007/s00249-009-0573-3
  10. Proteome analysis of chloroplast proteins in stage albinism line of winter wheat (triticum aestivum) FA85 vol.42, pp.7, 2009, https://doi.org/10.5483/BMBRep.2009.42.7.450
  11. Increased hexosamine biosynthetic pathway flux dedifferentiates INS-1E cells and murine islets by an extracellular signal-regulated kinase (ERK)1/2-mediated signal transmission pathway vol.55, pp.1, 2012, https://doi.org/10.1007/s00125-011-2315-1
  12. O-GlcNAc profiling: from proteins to proteomes vol.11, pp.1, 2014, https://doi.org/10.1186/1559-0275-11-8
  13. Increased sugar uptake promotes oncogenesis via EPAC/RAP1 and O-GlcNAc pathways vol.124, pp.1, 2014, https://doi.org/10.1172/JCI63146
  14. Combined Antibody/Lectin Enrichment Identifies Extensive Changes in the O-GlcNAc Sub-proteome upon Oxidative Stress vol.15, pp.12, 2016, https://doi.org/10.1021/acs.jproteome.6b00369
  15. vol.188, pp.2, 2011, https://doi.org/10.1534/genetics.111.126490