DOI QR코드

DOI QR Code

A Novel Role of Classical Swine Fever Virus Erns Glycoprotein in Counteracting the Newcastle Disease Virus (NDV)-mediated IFN-β Induction

  • Xia, Yan-Hua (State Key Laboratory of Virology, College of Life Sciences, Wuhan University) ;
  • Chen, Liu (State Key Laboratory of Virology, College of Life Sciences, Wuhan University) ;
  • Pan, Zi-Shu (State Key Laboratory of Virology, College of Life Sciences, Wuhan University) ;
  • Zhang, Chu-Yu (State Key Laboratory of Virology, College of Life Sciences, Wuhan University)
  • Published : 2007.09.30

Abstract

$E^{rns}$ is an envelope glycoprotein of classical swine fever virus (CSFV) and has an unusual feature of RNase activity. In the present study, we demonstrate that $E^{rns}$ counteracts Newcastle disease virus (NDV)-mediated induction of IFN-$\beta$. For this purpose, $E^{rns}$ fused to the enhanced green fluorescent protein (EGFP) was transiently expressed in porcine kidney 15 (PK15) cells. In luciferase activity assay, $E^{rns}$-EGFP was found to prevent IFN-$\beta$ promoter-driven luciferase expression and block the induction of IFN-$\beta$ promoter mediated by NDV in a dose-dependent manner. Through IFN-specific semi-quantitative RT-PCR detection, obvious decrease of IFN-$\beta$ mRNA in NDV-infected PK15 cells was observed in the presence of $E^{rns}$-EGFP. In contrast, EGFP alone showed none of this block capacity. In addition, $E^{rns}$-EGFP mutations with RNase inactivation were also found to block NDV-mediated induction of IFN-$\beta$. These evidences establish a novel function for CSFV $E^{rns}$ glycoprotein in counteraction of the IFN-$\beta$ induction pathway.

Keywords

References

  1. Bruschke, C. J., Hulst, M. M., Moormann, R. J., van Rijn, P. A. and van Oirschot, J. T. (1997) Glycoprotein of pestiviruses induces apoptosis in lymphocytes of several species. J. Virol. 71, 6692-6696.
  2. Charleston, B., Fray, M. D., Baigent, S., Carr, B. V. and Morrison, W. I. (2001) Establishment of persistent infection with noncytopathic bovine viral diarrhea virus in cattle is associated with a failure to induce type interferon. J. Gen. Virol. 82, 1893-1897. https://doi.org/10.1099/0022-1317-82-8-1893
  3. Haller, O., Kochs, G. and Weber, F. (2006) The interferon response circuit: Induction and suppression by pathogenic viruses. Virology 344, 119-130. https://doi.org/10.1016/j.virol.2005.09.024
  4. Hulst, M. M., Himes, G., Newbigin, E. and Moormann, R. J. (1994) Glycoprotein E2 of classical swine fever virus: expression in insect cells and indentification as a ribonuclease. Virology 200, 558-565. https://doi.org/10.1006/viro.1994.1218
  5. Hulst, M. M., Panoto, F. E., Hooekmann, A., van Gennip, H. G. and Moormann, R. J. (1998) Inactivation of the RNase activity of glycoprotein $E^{rns}$ of classical swine fever virus results in a cytopathogenic virus. J. Virol. 72, 151-157.
  6. Inaba, Y., Tanaka, Y., Kumagai, T., Omori, T. and Ito, H. (1968) Bovine diarrhea virus. END phenomenon: exaltation of Newcastle disease virus in bovine cells infected with bovine diarrhea virus. Jpn. J. Microbiol. 12, 35-49. https://doi.org/10.1111/j.1348-0421.1968.tb00367.x
  7. Iqbal, M., Poole, E., Goodbourn, S. and McCauley, J. W. (2004) Role for bovine viral diarrhea virus $E^{rns}$ glycoprotein in the control of activation of beta interferon by double-stranded RNA. J. Virol. 78, 136-145. https://doi.org/10.1128/JVI.78.1.136-145.2004
  8. Kawata, Y., Sakiyama, F. and Tamaoki, H. (1988) Amino-acid sequence of ribonuclease T2 from Aspergillus oryzae. Eur. J. Biochem. 176, 683-697. https://doi.org/10.1111/j.1432-1033.1988.tb14331.x
  9. Kumagai, T., Shimizu, T. and Matsumoto, M. (1958) Detection of hog cholera virus by its effect on Newcastle disease virus in swine tissue culture. Science 28, 366.
  10. Lindenbach, B. D. and Rice, C. M. (2001) Flaviviridae: the viruses and their replication; in Fields virology, Knipe, D. M. and Howley, P. M. (eds), pp. 991-1041, Lippincott/The Williams and Wilkins Co., Philadelphia, USA.
  11. Lomniczi, B. (1973) Studies on interferon production and interferon sensitivity of different strains of Newcastle disease virus. J. Gen. Virol. 21, 305-313. https://doi.org/10.1099/0022-1317-21-2-305
  12. Matthias, S. and Peterhans, E. (2001) Noncytopathic bovine viral diarrhea virus inhibits double-stranded RNA-induced apoptosis and interferon synthesis. J. Virol. 75, 4692-4698. https://doi.org/10.1128/JVI.75.10.4692-4698.2001
  13. Meyers, G., Armin Saalmuller, A. and Buttner, M. (1999) Mutation abrogating the RNase activity in glycoprotein $E^{rns}$ of the pestivirus classical swine fever virus lead to virus attenuation. J. Virol. 73, 10224-10234.
  14. Park, M., Shaw, M. L., Munoz-Jordan, J., Cros, J.F., Nakaya, T., Bouvier, N., Palese, P., Garcia-Sastre, A. and Basler C. F. (2003) Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins. J. Virol. 77, 1501-1511. https://doi.org/10.1128/JVI.77.2.1501-1511.2003
  15. Paton, D. J., Sands, J. J., Lowings, J. P., Smith, J. E., Ibata, G. and Edwards, S. (1995) A proposed division of the pestivirus genus using monoclonal antibodies, supported by crossneutralisation assays and genetic sequencing. Vet. Res. 26, 92-109.
  16. Paton, D. J. and Greiser-Wilke, I. (2003) Classical swine fever-an update. Res. Vet. Sci. 75, 169-178. https://doi.org/10.1016/S0034-5288(03)00076-6
  17. Ruggli, N., Tratschin, J. D., Schweizer, M., McCullough, K. C., Hofmann, M. A. and Summerfield, A. (2003) Classical swine fever virus interferes with cellular antiviral defense: evidence for a novel function of $N^{pro}$. J. Virol. 77, 7645-7654. https://doi.org/10.1128/JVI.77.13.7645-7654.2003
  18. Ruggli, N., Bird, B. H., Liu, L., Bauhofer, O., Tratschin, J. D. and Hofmann, M. A. (2005) $N^{pro}$ of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and $IFN-{\alpha}/{\beta}$ induction. Virology 340, 265-276. https://doi.org/10.1016/j.virol.2005.06.033
  19. Rumenapf, T., Unger, G., Strauss, J. H. and Thiel, H. J. (1993) Processing of the envelope glycoproteins of pestiviruses. J. Virol. 67, 3288-3294.
  20. La Rocca, S. A., Herbert, J. R., Crooke, H., Drew, T. W., Wileman, T. E. and Powell, P. P. (2005) Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, $N^{pro}$. J. Virol. 79, 7239-7247. https://doi.org/10.1128/JVI.79.11.7239-7247.2005
  21. Schneider, R., Unger, G., Stark, R., Schneider-Scherzer, E. and Thiel, H. J. (1993) Identification of a structural glycoprotein of an RNA virus as a ribonuclease. Science 261, 1169-1171. https://doi.org/10.1126/science.8356450
  22. Baigent, S. J., Zhang, G., Fray, M. D., Flick-Smith, H., Goodbourn, S. and McCauley, J. W. (2002) Inhibition of beta interferon transcription by noncytopathogenic bovine viral diarrhea virus is through an interferon regulatory factor 3-dependent mechamism. J. Virol. 76, 8979-8988. https://doi.org/10.1128/JVI.76.18.8979-8988.2002
  23. Weiland, F., Weiland, E., Unger, G., Saalmuller, A. and Thiel, H. J. (1999) Localization of pestiviral envelope proteins $E^{rns}$ and E2 at the cell surface and on isolated particles. J. Gen. Virol. 80, 1157-1165. https://doi.org/10.1099/0022-1317-80-5-1157
  24. Windisch, J. M., Schneider, R., Stark, R., Weiland, E., Meyers, G. and Thiel, H. J. (1996) RNase of classical swine fever virus: biochemical characterization and inhibition by virusneutralizing monoclonal antibodies. J. Virol. 70, 352-358.

Cited by

  1. BVDV: A pestivirus inducing tolerance of the innate immune response vol.41, pp.1, 2013, https://doi.org/10.1016/j.biologicals.2012.07.006
  2. Analysis of synonymous codon usage in classical swine fever virus vol.38, pp.1, 2009, https://doi.org/10.1007/s11262-008-0296-z
  3. An RNA-hydrolyzing recombinant antibody exhibits an antiviral activity against classical swine fever virus vol.395, pp.4, 2010, https://doi.org/10.1016/j.bbrc.2010.04.032
  4. Roles of bovine viral diarrhea virus envelope glycoproteins in inducing autophagy in MDBK cells vol.76, 2014, https://doi.org/10.1016/j.micpath.2014.09.011