Sexual patterns in teleosts are diverse and include gonochorism, in which individuals function as either females or males throughout their lifetimes, and hermaphroditism, in which individuals function as both sexes, either simultaneously or sequentially (Atz, 1964; Park et al., 2004). The sexual pattern of the brown croaker Miichthys miuy (Basilewsky) is not fully understood. This fish is the most common member of the Sciaenidae in Korea, where it is an important commercial component of the longline fishery. Brown croakers occur in the Yellow Sea, the Southern Sea of Korea, the Southwest Sea of Japan, and the South China Sea (Choi et al., 2002). Our objective is to describe early gonadal development of the species in order to determine the sex-
ual pattern.

Materials and Methods

The experimental animals were laboratory-bred offspring raised in the Gyeongsangnam-do Fisheries Resources and Research Institute, Korea, following standard methods for artificial culture. Newly hatched larvae were kept at an incubation temperature of 24 ± 1°C. Animals (n = 10) were sampled at 5-day intervals from hatching to the 100th day post-hatching (dph), and at 10-day intervals from the 110th to 180th dph. Total body weights and lengths of 10 freshly sampled larvae at different developmental stages were measured to the nearest 0.01 g and 0.1 mm, respectively; prior to measurements, the larvae were anesthetized with 300 ppm lidocaine-HCL/ NaHCO₃ at 25°C. Growth in total length and body weight were examined with the von Bertalanffy and Gompertz equations, respectively (Gompertz, 1925; von Bertalanffy, 1938).

After measuring weights and lengths, samples were fixed in 10% neutral formalin for histological observations. After fixation in Bouin’s fixative for 24 h, specimens (excluding the head and caudal region) were prepared for sectioning by routine dehydration and paraffin embedding procedures. Cross sections (4 ~ 6 µm thick) were stained with Mayer’s hematoxylin and eosin phloxine B solution, examined, and photographed under light microscopy.

Results and Discussion

Figure 1 shows the trends in total length and body weight of fish from hatching to the 180th dph. Total length (TL) increases indicate continuous growth of fish, as described by the von Bertalanffy growth expression TL = 1.5409t⁰.7111 (R² = 0.96). Continuous growth in body weight (BW) also occurred, as described by the Gompertz expression BW = 0.0027t¹.4036 (R² = 0.98). Growth in total length accelerated until 180th dph.

On the 20th dph (10.4 mm TL, 0.14 g BW, 480 D° (degree-days)), primordial germ cells (PGCs) were clearly visible between the peritoneal wall and gut in the posterior trunk region (Fig. 2a). On the 40th dph (19.4 mm TL, 0.39 g BW, 960 D°), the primordial germ cells began to protrude into the peritoneal cavity. Each was enclosed separately by somatic cells in the future gonadal area (Fig. 2b). The PGCs were identified easily by their more or less irregular shape, their size (3 ~ 4 µm in diameter), and their enclosure in loose connective tissue. PGCs developed along the peritoneal wall of the coelomic cavity at the site of the future gonadal ridges. During the larval period, the gonadal anlage gradually arose from the PGCs and surrounding somatic cells (Yamamoto, 1969; Timmermans, 1987; Nagai et al., 2001).

PGCs containing condensed chromatin and oocytes (4 ~ 5 µm in diameter) in meiotic prophase were present on the 50th dph (24.2 mm TL, 0.64 g BW, 1,200 D°). The PGCs and oocytes were enclosed by somatic cells. On the 50th dph (31.3 mm TL, 0.93 g BW, 1,560 D°), we observed numerous oocytes in meiotic prophase and with meiotic figures. The oocytes were in the chromatin-nucleolus stage. The ovary was beginning to fill with blood vessels and the endoovarian canal (Fig. 2c). This early-stage differentiated ovary became apparent on the gut, adjacent to the liver or embedded within it. In most cases, PGCs appeared to migrate directly to gonad tissues. This is in contrast to the Caspian Sea sturgeon PGCs, which migrate to other organs, such as the liver (Romanov and Altuf’ev, 1993). By the 120th dph (4.60 mm TL, 1.38 g BW, 2,880 D°), the oocytes were in the peri-nucleolus stage and had increased from
Fig. 2. Histological sections (H-E stain) of brown croaker, M. miiuy gonads showing successive stages of gonadal differentiation. (a) Gonad on the 20th day post-hatch (dph). The gonad consists of a genital ridge adjacent to the swimbladder and contains primordial germ cell (scale bar, 10 µm). (b) Undifferentiated gonad on the 40th dph. with clutches of primordial germ cells (arrowed) protruding into the peritoneal cavity (scale bar, 100 µm). (c) Early differentiated ovary on the 65th dph. Note the presence of oocyte in the chromatin-nucleolus stage. Meiotic figures become common (scale bar, 10 µm). (d) Completely differentiated ovary on the 120th dph, with primary oocyte and a well developed ovarian lamellae (scale bar, 200 µm). (e) Undifferentiated presumptive male gonads on the 80th dph showing a larger part of the gonad is occupied by stromal cells. In addition, groups of gonial cells are present and they are arranged in cyst-like manner (arrows) (scale bar, 10 µm). (f) Tests on the 120th dph, showing cysts filled with spermatogonia as well as spermatocytes (scale bar, 50 µm). BV, blood vessel; CNO, oocyte in chromatin-nucleolus stage; G, gut; GA, gonial cell; GC, germ cell; GR, genital ridge; EC, endoovarian canal; L, liver; MP, meiotic prophase; OL, ovarian lamella; PGC, primordial germ cell; PO, primary oocyte; PW, peritoneal wall; SC, spermatocyte; SG, spermatogonia.
20 to 40 µm in diameter (Fig. 2d).

Development in the male reproductive system was rather different. The PGCs (spermatogonia) of the presumptive testes did not enter meiosis until the 80th to 120th dph. Through the 65th dph, spermatogonia remained quiescent, and then gradually increased in number through mitotic divisions. In contrast to the developing ovaries, somatic cells were scattered throughout the gonads from the earliest stages. On the 80th dph (37.9 mm TL, 1.39 g BW, 1,920 D*), the beginning of testis lobule formation was indicated by the occurrence of spermatogonial cysts enveloped by somatic cells in some of the testes (Fig. 2e). This was more apparent on the 120th dph when the testes contained many lobules, each with a clear central lumen (Fig. 2f). At this time, the testis lobules of some of the fish contained all germ cell stages through to the spermatocytes. PGC differentiation in males occurred up to 15 days later than in females (which started on the 65th dph). Ovaries were clearly discernable under light microscopy between the 65th and 120th dph. In contrast, definitive testes were not identifiable by their PGCs until between 80th and 120th dph. This developmental difference between the sexes is common among gonochoristic fish (Yamamoto, 1969; Nakamura et al., 1998; Park et al., 2004). Our observations show that the brown croaker is a differentiated gonochoristic teleost. Ours is one of few studies to present detailed simultaneous chronological descriptions of the gonadogenesis in this species. The work establishes a protocol for sex reversal, which may be useful for laboratory studies of sexual expression and for potential aquaculture exploitation of the brown croaker.

Acknowledgements

We thank the anonymous reviewers for their constructive comments on the first draft. This study was supported in part by grants awarded to the first author by the Korea Research Foundation (KRF-2006-005-J 00501), and to the last author by the Ministry of Commerce, Industry and Energy as a part of the Regional Technology Innovation Program (RTI 04-01-01). The assistance of the project staff is gratefully acknowledged.

References

민어, *Miichthys miuy* (Basilewsky)의 성장과 연관된 생식소 발달

박인석*, 설동원, 임수연, 박민욱, 허우준, 조성환
송영채¹, 김재수², 조효제², 노충환³, 최희정³

한국해양대학교 해양환경·생명과학부, ¹한국해양대학교 건설·환경공학부.
²한국해양대학교 조선해양시스템공학부, ³한국해양연구원 자원연구본부

부화부터 부화 후 120일까지 민어, *Miichthys miuy* (Basilewsky)의 성분화를 조사하였다. 시원세포는 부화 후 20일(전장 10.4 mm, 체중 0.14 g)에 출현하여 부화 후 40일(전장 19.4 mm, 체중 0.39 g)에 복강으로 이동하기 시작하였다. 부화 후 65일(전장 31.3 mm, 체중 0.93 g, 1,560 D°(적산온도))에 응축된 염색질 상태인 시원세포는 감수분열을 보여 난소로의 분화가 확인되었다. 부화 후 120일(전장 4.60 mm, 체중 1.38 g, 2,880 D°)에 난모세포는 주변인기 단계로 직경이 20~40 µm로 증가하였다. 성분화후 난모세포는 크기 증가를 보인 반면, 정소는 부화 후 65일부터 증식하기 시작하였다. 부화 후 80일(전장 37.9 mm, 체중 1.39 g, 1,920 D°)에 정소 세포에 싸여진 정원세포 낭포의 출현과 정소 소엽 형성이 시작되었다. 부화 후 120일에 정소 소엽에는 시원세포와 정모세포가 존재하였다. 본 연구 결과 민어의 성분화 양상은 분화형자웅이체이다.