DOI QR코드

DOI QR Code

Thermodynamic Analysis of the Low- to Physiological-Temperature Nondenaturational Conformational Change of Bovine Carbonic Anhydrase

  • Hollowell, Heather N. (Department of Chemistry and Physics, Texas Woman's University) ;
  • Younvanich, Saronya S. (Department of Chemistry and Physics, Texas Woman's University) ;
  • McNevin, Stacey L. (Department of Chemistry and Physics, Texas Woman's University) ;
  • Britt, B. Mark (Department of Chemistry and Physics, Texas Woman's University)
  • Published : 2007.03.31

Abstract

The stability curve - a plot of the Gibbs free energy of unfolding versus temperature - is calculated for bovine erythrocyte carbonic anhydrase in 150 mM sodium phosphate (pH = 7.0) from a combination of reversible differential scanning calorimetry measurements and isothermal guanidine hydrochloride titrations. The enzyme possesses two stable folded conformers with the conformational transition occurring at ~30$^{\circ}C$. The methodology yields a stability curve for the complete unfolding of the enzyme below this temperature but only the partial unfolding, to the molten globule state, above it. The transition state thermodynamics for the low- to physiological-temperature conformational change are calculated from slow-scan-rate differential scanning calorimetry measurements where it is found that the free energy barrier for the conversion is 90 kJ/mole and the transition state possesses a substantial unfolding quality. The data therefore suggest that the x-ray structure may differ considerably from the physiological structure and that the two conformers are not readily interconverted.

Keywords

References

  1. Anderson, E. and Britt, B. M. (2002) The stability curve of bovine adenosine deaminase is bimodal. J. Biomol. Struct. Dynam. 20, 375-380. https://doi.org/10.1080/07391102.2002.10506855
  2. Becktel, W. J. and Schellman, J. A. (1987) Protein stability curves. Biopolymers 26, 1859-1877. https://doi.org/10.1002/bip.360261104
  3. Bodnar, M. A. and Britt, B. M. (2006) Transition state characterization of the low- to physiological-temperature nondenaturational conformational change in bovine adenosine deaminase by slow scan rate differential scanning calorimetry. J. Biochem. Mol. Biol. 39, 167-170. https://doi.org/10.5483/BMBRep.2006.39.2.167
  4. Britt, B. M. (2004) Understanding enzyme structure and function in terms of the shifting specificity model. J. Biochem. Mol. Biol. 37, 394-401. https://doi.org/10.5483/BMBRep.2004.37.4.394
  5. Chen, B., Baase, W. A. and Schellman, J. A. (1989) Lowtemperature unfolding of a mutant of phage T4 lysozyme 2. kinetic investigations. Biochemistry 28, 691-699. https://doi.org/10.1021/bi00428a042
  6. Eriksson, E. A. and Liljas, A. (1986) Crystallization of and preliminary x-ray data for bovine carbonic anhydrase III. J. Biol. Chem. 261, 16247-16248.
  7. Gill, S. C. and von Hippel, P. H. (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319-326. https://doi.org/10.1016/0003-2697(89)90602-7
  8. Greene, R. F. and Pace, C. N. (1974) Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, $\alpha$- chymotrypsin, and $\beta$-lactoglobulin. J. Biol. Chem. 249, 5388- 5393.
  9. Kjellson, A., Sethson, I. and Jonsson, B. (2003) Hydrogen exchange in a large 29 kD protein and characterization of molten globule aggregation by NMR. Biochemistry 42, 363-374. https://doi.org/10.1021/bi026364g
  10. Kutyshenko, V. P. and Prokhorov, D. A. (2003) Guanidine hydrochloride unfolding of a carbonic anhydrase molten globule. Mol. Biol. 37, 1055-1060.
  11. Lopez-Arenas, L., Solios-Mendiola, S. and Hernandez-Arana, A. (1990) Estimating the degree of expansion in the transition state for protein unfolding: analysis of the pH dependence of the rate constant for caricain denaturation. Biochemistry 38, 15936-15943. https://doi.org/10.1021/bi991658w
  12. Martensson, L., Jonsson, B., Freskgard, P., Kihlgren, A., Svennson, M. and Carlsson, U. (1993) Characterization of folding intermediates of human carbonic anhydrase II: probing substructure by chemical labeling of SH groups introduced by site-directed mutagenesis. Biochemistry 32, 224-231. https://doi.org/10.1021/bi00052a029
  13. Nozaki, Y. (1972) The preparation of guanidine hydrochloride. Methods Enzymol. 26, 43-50. https://doi.org/10.1016/S0076-6879(72)26005-0
  14. Privalov, P. L. (1979) Stability of proteins: small globular proteins. Adv. Prot. Chem. 33, 167-241. https://doi.org/10.1016/S0065-3233(08)60460-X
  15. Privalov, P. L. and Gill, S. J. (1988) Stability of protein structure and hydrophobic interaction. Adv. Prot. Chem. 39, 191-234. https://doi.org/10.1016/S0065-3233(08)60377-0
  16. Prokhorov, D. A., Kutyshenko, V. P. and Khristoforov, V. S. (2005) Carbonic anhydrase B interactions with water and urea. Mol. Biol. 39, 438-444. https://doi.org/10.1007/s11008-005-0059-z
  17. Rendon, J. L. and Mendoza-Hernandez, G. (2001) Unfolding kinetics of glutathione reductase from cyanobacterium Spirulina maxima. Arch. Biochem. Biophys. 387, 265-272. https://doi.org/10.1006/abbi.2000.2230
  18. Sarraf, N. S., Saboury, A. A., Ranjbar, B. and Moosavi-Movahedi, A. A. (2004) Structural and functional changes of bovine carbonic anhydrase as a consequence of temperature. Acta Biochim. Polonica 51, 665-671.
  19. Strohmeyer, E. A., Beckley, J. R. and Britt, B. M. (2002) Direct measurement of local and global contributions in the binding of coformycin to bovine adenosine deaminase. J. Enzyme Inhibit. 17, 77-86. https://doi.org/10.1080/14756360290028610
  20. Uversky, V. N., Semisotnov, G. V., Pain, R. H. and Ptitsyn, O. B. (1992) 'All-or-none' mechanism of the molten globule unfolding. FEBS Lett. 314, 89-92. https://doi.org/10.1016/0014-5793(92)81468-2
  21. Uversky, V. N. and Ptitsyn, O. B. (1996) Further evidence on the equilibrium 'pre-molten globule state': four-state guanidinium chloride-induced unfolding of carbonic anhydrase B at low temperature. J. Mol. Biol. 255, 215-228. https://doi.org/10.1006/jmbi.1996.0018
  22. Wang, C., Lascu, I. and Giartosio, A. (1998) Bovine serum fetuin is unfolded through a molten globule state. Biochemistry 37, 8457-8464. https://doi.org/10.1021/bi9723010
  23. Younvanich, S. S. and Britt, B. M. (2006) The stability curve of hen egg white lysozyme. Prot. Pept. Lett. 13, 769-772. https://doi.org/10.2174/092986606777841163

Cited by

  1. Volume Change of the Random Coil to Folded Conformational Transition of <i>Thermomyces</i> <i>lanuginosus</i> Xylanase at 24&#176C and pH = 7.0 via Application of the Clausius-Clapeyron Equation vol.05, pp.04, 2014, https://doi.org/10.4236/jbpc.2014.54015
  2. A Quantitative Measure of Conformational Changes in Apo, Holo and Ligand-Bound Forms of Enzymes vol.8, pp.2, 2016, https://doi.org/10.1007/s12539-015-0284-7
  3. Do collagenases unwind triple-helical collagen before peptide bond hydrolysis? Reinterpreting experimental observations with mathematical models vol.70, pp.4, 2007, https://doi.org/10.1002/prot.21687
  4. Partial Phase Diagram of Aqueous Bovine Carbonic Anhydrase: Analyses of the Pressure-Dependent Temperatures of the Low- to Physiological-Temperature Nondenaturational Conformational Change and of Unfolding to the Molten Globule State vol.26, pp.2, 2008, https://doi.org/10.1080/07391102.2008.10507242
  5. Cystic Fibrosis Transmembrane Conductance Regulator: Temperature-Dependent Cysteine Reactivity Suggests Different Stable Conformers of the Conduction Pathway vol.50, pp.47, 2011, https://doi.org/10.1021/bi201176q
  6. Thermodynamic analysis of the nondenaturational conformational change of baker’s yeast phosphoglycerate kinase at 24°C vol.478, pp.2, 2008, https://doi.org/10.1016/j.abb.2008.07.005