DOI QR코드

DOI QR Code

Molecular Cloning of Hemoglobin Alpha-chain Gene from Pantholops hodgsonii, a Hypoxic Tolerance Species

  • Yingzhong, Yang (Research Center for High Altitude Medical Sciences, Qinghai University Medical School) ;
  • Droma, Yunden (First Department of Internal Medicine, Shinshu University School of Medicine) ;
  • Guoen, Jin (Research Center for High Altitude Medical Sciences, Qinghai University Medical School) ;
  • Zhenzhong, Bai (Research Center for High Altitude Medical Sciences, Qinghai University Medical School) ;
  • Lan, Ma (Research Center for High Altitude Medical Sciences, Qinghai University Medical School) ;
  • Haixia, Yun (Research Center for High Altitude Medical Sciences, Qinghai University Medical School) ;
  • Yue, Cao (Research Center for High Altitude Medical Sciences, Qinghai University Medical School) ;
  • Kubo, Keishi (First Department of Internal Medicine, Shinshu University School of Medicine) ;
  • Rili, Ge (Research Center for High Altitude Medical Sciences, Qinghai University Medical School)
  • Published : 2007.05.31

Abstract

To investigate the possible mechanisms of high-altitude native animals in adapting to high altitude, we cloned hemoglobin alpha-chain (alpha-chain Hb) gene from Pantholops hodgsonii, an animal species that indigenously lives at elevations of 3700-5500 m on the Qinghai-Tibetan plateau. Using reverse transcription polymerase chain reaction (RT-PCR) technique, the alpha-chain Hb gene was amplified from total RNA in the liver of the Pantholops hodgsonii. TA cloning technique was used and the PCR product was cloned into pGEM-T vector. The DNA sequence of the gene was highly homologous with sheep (99.1%), goat (98.6%), cattle (95.6%) and human (86.5%). The alpha-chain Hb gene encoded a 142-amino acid protein that could be identified with the homology of alpha-chain Hb protein in sheep (98%), goat (96%), cattle (91%) and human (87%). However, 18 alternations were detected when compared with the alpha-chain Hb gene in human, and 2 in sheep. Moreover, the alterations of a117 GluAsp and $\alpha$132 AsnSer in important regions were noted in human and sheep, respectively. Phylogenetic analysis suggested that the structure of alpha-chain Hb was highly similar to that in sheep. This study provided essential information for elucidating the possible roles of hemoglobin in adapting to extremely high altitude in Pantholops hodgsonii.

Keywords

References

  1. Ginsberg, J. R., Schaller, G. B. and Lowe, J. A. Petition to List the Tibetan Antelope (Pantholops hodgsonii) as an Endangered Species Pursuant to the U. S. Endangered Species Act of 1973. URL:http://www.earthisland.org/tpp/Exec_Summ.htm
  2. Global Biodiversity Information Facility/Pantholops hodgsonii. URL:http://www.secretariat.gbif.net/portal/ecat_browser.jsp?taxon Key=1009055&country Key=0&resource Key=0.
  3. Godovac-Zimmermann, J., Kosters, J., Braunitzer, G. and Goltenboth, R. (1988) Structural adaptation of bird hemoglobins to highaltitude respiration and the primary sequences of black-headed gull (Larus ridibundus, Charadriiformes) alpha A- and beta/beta'-chains. Biol. Chem. Hoppe. Seyler. 369, 341-348. https://doi.org/10.1515/bchm3.1988.369.1.341
  4. Hardison, R. (1998) Hemoglobins from bacteria to man: evolution of different patterns of gene expression. J. Exp. Biol. 201, 1099-1117.
  5. Hiebl, I., Braunitzer, G. and Schneeganss, D. (1987) The primary structures of the major and minor hemoglobin-components of adult Andean goose (Chloephaga melanoptera, Anatidae): the mutation Leu----Ser in position 55 of the beta-chains. Biol. Chem. Hoppe. Seyler. 368, 1559-1569. https://doi.org/10.1515/bchm3.1987.368.2.1559
  6. Jessen, T. H., Weber, R. E., Fermi, G., Tame, J. and Braunitzer, G. (1991) Adaptation of bird hemoglobins to high altitudes: demonstration of molecular mechanism by protein engineering. Proc. Natl. Acad. Sci. USA 88, 6519-6522. https://doi.org/10.1073/pnas.88.15.6519
  7. Lalthantluanga, R., Wiesner, H. and Braunitzer, G. (1985) Studies on yak hemoglobin (Bos grunniens, Bovidae): structural basis for high intrinsic oxygen affinity? Biol. Chem. Hoppe. Seyler. 366, 63-68. https://doi.org/10.1515/bchm3.1985.366.1.63
  8. Mairbaurl, H. (1994) Red blood cell function in hypoxia at altitude exercise. Int. J. Sports. Med. 15, 51-63. https://doi.org/10.1055/s-2007-1021020
  9. Monica, B. M., Silvana, B., Adriana, S. S., Duarte, S. H. O,, Marcio, A., Torsoni, S. T. O. S. and Fernando, F. C. (2003) Molecular characterization of hemoglobin $\alpha$-D chains from Geochelone carbonaria and Geochelone denticulata land turtles. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 134, 389-395. https://doi.org/10.1016/S1096-4959(02)00289-0
  10. Nowak, R. M. (ed.) (1999) Walkers Mammals of the World, Sixth Edition. The Johns Hopkins University Press, Baltimore, USA.
  11. Petruzzelli, R., Aureli, G., Lania, A., Galtieri, A., Desideri, A. and Giardina, B. (1996) Diving behaviour and haemoglobin function: the primary structure of the $\alpha$- and $\beta$-chains of the sea turtle (Caretta caretta) and its functional implications. J. Biochem. 316, 959-965. https://doi.org/10.1042/bj3160959
  12. Piccinini, M., Kleinschmidt, T., Klaus, D. J. and Braunitzer, G. (1990) Primary structure and oxygen-binding properties of the hemoglobin from guanaco (Lama Guanacoe, Tylopoda). Bio. Chem. Hoppe. Seyler. 371, 641-648. https://doi.org/10.1515/bchm3.1990.371.2.641
  13. Weber, R. E., Jessen, T. H., Malte, H. and Tame, J. (1993) Mutant hemoglobins (alpha 119-Ala and beta 55-Ser): functions related to high-altitude respiration in geese. J. Appl. Physiol. 75, 2646-2655. https://doi.org/10.1152/jappl.1993.75.6.2646
  14. Xu, S. Q., Yang, Y. Z., Zhou, J., Jing, G. E., Chen, Y. T., Wang, J., Yang, H. M., Wang, J., Yu, J., Zheng, X. G. and Ge, R. L. (2005) A mitochondrial genome sequence of the tibetan antelope (Pantholops hodgsonii). Genomics Proteomics Bioinformatics 3, 5-17 https://doi.org/10.1016/S1672-0229(05)03003-2

Cited by

  1. Adaptive phylogeography: functional divergence between haemoglobins derived from different glacial refugia in the bank vole vol.281, pp.1786, 2014, https://doi.org/10.1098/rspb.2014.0021
  2. An integrated systems approach to plateau ecosystem management—a scientific application in Qinghai and Tibet plateau vol.17, pp.2, 2015, https://doi.org/10.1007/s10796-012-9406-5
  3. Relaxed functional constraints on triplicate α-globin gene in the bank vole suggest a different evolutionary history from other rodents vol.113, pp.1, 2014, https://doi.org/10.1038/hdy.2014.12
  4. Expression profiling of abundant genes in pulmonary and cardiac muscle tissues of Tibetan Antelope (Pantholops hodgsonii) vol.523, pp.2, 2013, https://doi.org/10.1016/j.gene.2013.03.011
  5. Molecular cloning, characterization and expression of myoglobin in Tibetan antelope (Pantholops hodgsonii), a species with hypoxic tolerance vol.533, pp.2, 2014, https://doi.org/10.1016/j.gene.2013.09.030