DOI QR코드

DOI QR Code

Biosynthesis of Isoprenoids: Characterization of a Functionally Active Recombinant 2-C-methyl-D-erythritol 4-phosphate Cytidyltransferase (IspD) from Mycobacterium tuberculosis H37Rv

  • Shi, Wenjun (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University) ;
  • Feng, Jianfang (Pharmaceutical Division, Shanghai Institute of Pharmaceutical Industry) ;
  • Zhang, Min (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University) ;
  • Lai, Xuhui (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University) ;
  • Xu, Shengfeng (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University) ;
  • Zhang, Xuelian (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University) ;
  • Wang, Honghai (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University)
  • Published : 2007.11.30

Abstract

Tuberculosis, caused by Mycobacterium tuberculosis, continues to be one of the leading infectious diseases to humans. It is urgent to discover novel drug targets for the development of antitubercular agents. The 2-C-methyl-Derythritol-4-phosphate (MEP) pathway for isoprenoid biosynthesis has been considered as an attractive target for the discovery of novel antibiotics for its essentiality in bacteria and absence in mammals. MEP cytidyltransferase (IspD), the third-step enzyme of the pathway, catalyzes MEP and CTP to form 4-diphosphocytidyl-2-C-methylerythritol (CDP-ME) and PPi. In the work, ispD gene from M. tuberculosis H37Rv (MtIspD) was cloned and expressed. With N-terminal fusion of a histidine-tagged sequence, MtIspD could be purified to homogeneity by one-step nickel affinity chromatography. MtIspD exists as a homodimer with an apparent molecular mass of 52 kDa. Enzyme property analysis revealed that MtIspD has high specificity for pyrimidine bases and narrow divalent cation requirements, with maximal activity found in the presence of CTP and $Mg^{2+}$. The turnover number of MtIspD is $3.4 s^{-1}$. The Km for MEP and CTP are 43 and $92{\mu}M$, respectively. Furthermore, MtIspD shows thermal instable above $50^{\circ}C$. Circular dichroism spectra revealed that the alteration of tertiary conformation is closely related with sharp loss of enzyme activity at higher temperature. This study is expected to help better understand the features of IspD and provide useful information for the development of novel antibiotics to treat M. tuberculosis.

Keywords

References

  1. Altincicek, B., Kollas, A. K., Eberl, M., Wiesner, J., Sanderbrand, S., Hintz, M., Beck, E. and Jomaa, H. (2001a) LytB, a novel gene of the 2-C-methyl-D-erythritol 4-phosphate pathway of isoprenoid biosynthesis in Escherichia coli. FEBS Lett. 499, 37-40. https://doi.org/10.1016/S0014-5793(01)02516-9
  2. Altincicek, B., Kollas, A. K., Sanderbrand, S., Wiesner, J., Hintz, M., Beck, E. and Jomaa, H. (2001b) GcpE is involved in the 2-Cmethyl- D-erythritol 4-phosphate pathway of isoprenoid biosynthesis in Escherichia coli. J. Bacteriol. 183, 2411-2416. https://doi.org/10.1128/JB.183.8.2411-2416.2001
  3. Baumruk, V., Pancoska, P. and Keiderling, T. A. (1996) Predictions of secondary structure using statistical analyses of electronic and vibrational circular dichroism and Fourier transform infrared spectra of proteins in $H_2O$. J. Mol. Biol. 259, 774-791. https://doi.org/10.1006/jmbi.1996.0357
  4. Bernal, C., Palacin, C., Boronat, A. and Imperial, S. (2005) A colorimetric assay for the determination of 4-diphosphocytidyl-2-C-methyl-D-erythritol 4-phosphate synthase activity. Anal. Biochem. 337, 55-61. https://doi.org/10.1016/j.ab.2004.10.011
  5. Cane, D. E., Chow, C., Lillo, A. and Kang, I. (2001) Molecular cloning, expression and characterization of the first three genes in the mevalonate-independent isoprenoid pathway in Streptomyces coelicolor. Bioorg. Med. Chem. 9, 1467-1477. https://doi.org/10.1016/S0968-0896(01)00050-5
  6. Cornish, R. M., Roth, J. R. and Poulter, C. D. (2006) Lethal mutations in the isoprenoid pathway of Salmonella enterica. J. Bacteriol. 188, 1444-1450. https://doi.org/10.1128/JB.188.4.1444-1450.2006
  7. Cunningham, F. X., Jr., Lafond, T. P. and Gantt, E. (2000) Evidence of a role for LytB in the nonmevalonate pathway of isoprenoid biosynthesis. J. Bacteriol. 182, 5841-5848. https://doi.org/10.1128/JB.182.20.5841-5848.2000
  8. Estevez, J. M., Cantero, A., Romero, C., Kawaide, H., Jimenez, L. F., Kuzuyama, T., Seto, H., Kamiya, Y. and Leon, P. (2000) Analysis of the expression of CLA1, a gene that encodes the 1- deoxyxylulose 5-phosphate synthase of the 2-C-methyl-Derythritol- 4-phosphate pathway in Arabidopsis. Plant Physiol. 124, 95-104. https://doi.org/10.1104/pp.124.1.95
  9. Freiberg, C., Wieland, B., Spaltmann, F., Ehlert, K., Brotz, H. and Labischinski, H. (2001) Identification of novel essential Escherichia coli genes conserved among pathogenic bacteria. J. Mol. Microbiol. Biotechnol. 3, 483-489.
  10. Gabrielsen, M., Bond, C. S., Hallyburton, I., hecht, S., Bacher, A, Eisenreich, W., Rohidch, F. and Hunter, W. N. (2004a) Hexameric Assembly of the bifunctional methylerythritol 2,4- cyclodiphosphate synthase and protein-protein associations in the deoxy-xylulose-dependent pathway of isoprenoid precursor biosynthesis. J. Bio. Chem. 279, 52753-52761. https://doi.org/10.1074/jbc.M408895200
  11. Gabrielsen, M., Kaiser, J., Rohdich, F., Eisenreich, W., Laupitz, R., Bacher, A., Bond, C. S. and Hunter, W. N. (2006) The crystal structure of a plant 2C-methyl-D-erythritol 4-phosphate cytidylyltransferase exhibits a distinct quaternary structure compared to bacterial homologues and a possible role in feedback regulation for cytidine monophosphate. FEBS J. 273, 1065-1073. https://doi.org/10.1111/j.1742-4658.2006.05133.x
  12. Gabrielsen, M., Rohdich, F., Eisenreich, W., Grawert, T., Hecht, S., Bacher, A. and Hunter, W. N. (2004b) Biosynthesis of isoprenoids: a bifunctional IspDF enzyme from Campylobacter jejuni. Eur. J. Biochem. 271, 3028-3035. https://doi.org/10.1111/j.1432-1033.2004.04234.x
  13. Hecht, S., Eisenreich, W., Adam, P., Amslinger, S., Kis, K., Bacher, A., Arigoni, D. and Rohdich, F. (2001) Studies on the nonmevalonate pathway to terpenes: the role of the GcpE (IspG) protein. Proc. Natl. Acad. Sci. USA 98, 14837-14842. https://doi.org/10.1073/pnas.201399298
  14. Herz, S., Wungsintaweekul, J., Schuhr, C. A., Hecht, S., Luttgen, H., Sagner, S., Fellermeier, M., Eisenreich, W., Zenk, M. H., Bacher, A. and Rohdich, F. (2000) Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-D-erythritol 2- phosphate to 2C-methyl-D-erythritol 2,4-cyclodiphosphate. Proc. Natl. Acad. Sci. USA 97, 2486-2490. https://doi.org/10.1073/pnas.040554697
  15. Jomaa, H., Wiesner, J., Sanderbrand, S., Altincicek, B., Weidemeyer, C., Hintz, M., Turbachova, I., Eberl, M., Zeidler, J., Lichtenthaler, H. K., Soldati, D. and Beck, E. (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285, 1573-1576. https://doi.org/10.1126/science.285.5433.1573
  16. Jones, C. W., Brice, J. M., Downs, A. J. and Drozd, J. W. (1975) Bacterial respiration-linked proton translocation and its relationship to respiratory-chain composition. Eur. J. Biochem. 52, 265-271. https://doi.org/10.1111/j.1432-1033.1975.tb03994.x
  17. Kemp, L. E., Bond, C. S. and Hunter, W. N. (2003) Structure of a tetragonal crystal form of Escherichia coli 2C-methyl-Derythritol 4-phosphate cytidylyltransferase. Acta. Crystallogr. 59, 607-610.
  18. Kuzuyama, T., Shizimu, T., Takahashi, S. and Seto, H. (1998a) Fosmidomycin, a specific inhibitor of 1-deoxy-D-xylulose 5- phosphate reductoisomerase in the nonmevalonate pathway of isoprenoidbiosynthesis. Tetrahedron Lett. 39, 7913-7916. https://doi.org/10.1016/S0040-4039(98)01755-9
  19. Kuzuyama, T., Takagi, M., Kaneda, K., Tohru and Seto, H. (2000a) Formation of 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol from 2-C-methyl-D-erythritol 4-phosphate by 2-C-methyl-Derythritol 4-phosphate cytidylyltransferase, a new enzyme in the nonmevalonate pathway. Tetrahedron Lett. 41, 703-706. https://doi.org/10.1016/S0040-4039(99)02143-7
  20. Kuzuyama, T., Takagi, M., Kaneda, K., Watanabe, H., Dairi, T. and Seto, H. (2000b) Studies on the nonmevalonate pathway: conversion of 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol to its 2-phospho derivative by 4-(cytidine 5'-diphospho)-2- Cmethyl-D-erythritol kinase. Tetrahedron Lett. 41, 2925-2928. https://doi.org/10.1016/S0040-4039(00)00295-1
  21. Kuzuyama, T., Takahashi, S., Watanabe, H. and Seto, H. (1998b) Direct Formation of 2-C-Methyl-D-Erythritol 4-Phosphate from 1-Deoxy-D-Xylulose 5-Phosphate by 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase, A New Enzyme in the Non-Mevalonate pathway to Isopentenyl Diphosphate. Tetrahedron Lett. 39, 4509-4512. https://doi.org/10.1016/S0040-4039(98)00802-8
  22. Lell, B., Ruangweerayut, R., Wiesner, J., Missinou, M. A., Schindler, A., Baranek, T., Hintz, M., Hutchinson, D., Jomaa, H. and Kremsner, P. G. (2003) Fosmidomycin, a novel chemotherapeutic agent for malaria. Antimicrob Agents Chemother. 47, 735-738. https://doi.org/10.1128/AAC.47.2.735-738.2003
  23. Lois, L. M., Campos, N., Putra, S. R., Danielsen, K., Rohmer, M. and Boronat, A. (1998) Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of D-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc. Natl. Acad. Sci. USA 95, 2105-2110. https://doi.org/10.1073/pnas.95.5.2105
  24. Luttgen, H., Rohdich, F., Herz, S., Wungsintaweekul, J., Hecht, S., Schuhr, C. A., Fellermeier, M., Sagner, S., Zenk, M. H., Bacher, A. and Eisenreich, W. (2000) Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol. Proc. Natl. Acad. Sci. USA 97, 1062-1067. https://doi.org/10.1073/pnas.97.3.1062
  25. Richard, S. B., Bowman, M. E., Kwiatkowski, W., Kang, I., Chow, C., Lillo, A. M., Cane, D. E. and Noel, J. P. (2001) Structure of 4- diphosphocytidyl-2-C-methylerythritol synthethase involved in mevalonate-independent isoprenoid biosynthesis. Nat. Struct. Biol. 8, 641-648. https://doi.org/10.1038/89691
  26. Rohdich, F., Hecht, S., Gartner, K., Adam, P., Krieger, C., Amslinger, S., Arigoni, D., Bacher, A. and Eisenreich, W. (2002) Studies on the nonmevalonate terpene biosynthetic pathway: Metabolic role of IspH (LytB) protein. Proc. Natl. Acad. Sci. USA 99, 1158-1163. https://doi.org/10.1073/pnas.032658999
  27. Rohdich, F., Wungsintaweekul, J., Eisenreich, W., Richter, G., Schuhr, C. A., Hecht, S., Zenk, M. H. and Bacher, A. (2000) Biosynthesis of terpenoids: 4-diphosphocytidyl-2C-methyl-Derythritol synthase of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97, 6451-6456. https://doi.org/10.1073/pnas.97.12.6451
  28. Rohdich, F., Wungsintaweekul, J., Fellermeier, M., Sagner, S., Herz, S., Kis, K., Eisenreich, W., Bacher, A. and Zenk, M. H. (1999) Cytidine 5'-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4- diphosphocytidyl-2-C-methylerythritol, Proc. Natl. Acad. Sci. USA 96, 11758-11763. https://doi.org/10.1073/pnas.96.21.11758
  29. Rohmer, M., Knani, M., Simonin, P., Sutter, B. and Sahm, H. (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem. J. 295, 517-524. https://doi.org/10.1042/bj2950517
  30. Seemann, M., Campos, N., Rodriguez-Concepcion, M., Ibanez, E., Duvold, T., Tritsch, D., Boronat, A. and Rohmer, M. (2002) Isoprenoid biosynthesis in Escherichia coli via the methylerythritol phosphate pathway: enzymatic conversion of methylerythritol cyclodiphosphate into a phosphorylated derivative of (E)-2- methylbut-2-ene-1,4-diol. Tetrahedron Lett. 43, 1413-1415. https://doi.org/10.1016/S0040-4039(02)00003-5
  31. Sprenger, G. A., Scho¨rken, U., Wiegert, T., Grolle, S., De Graaf, A. A., Taylor, S. V., Begley, T. P., Bringer-Meyer, S. and Sahm, H. (1997) Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy- Dxylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc. Natl. Acad. Sci. USA 94, 12857-12862. https://doi.org/10.1073/pnas.94.24.12857
  32. Takagi, M., Kuzuyama, T., Kaneda, K., Watanabe, H., Dairi, T. and Seto, H. (2000) Studies on the nonmevalonate pathway: formation of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate from 2-phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol. Tetrahedron Lett. 41, 3395-3398. https://doi.org/10.1016/S0040-4039(00)00375-0
  33. Venyaminov, S. Y. and Vassilenko, K. S. (1994) Determination of protein tertiary structure class from circular dichroism spectra. Anal. Biochem. 222, 176-184. https://doi.org/10.1006/abio.1994.1470
  34. Wolucka, B. A., McNeil, M. R., Hoffmann, E., Chojnacki, T. and Brennan, P. J. (1994) Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J. Mol. Chem. 269, 23328-23335.
  35. Yang, J. T., Wu, C. S. and Martinez, H. M. (1986) Calculation of protein conformation from circular dichroism. Methods Enzymol. 130, 208-269. https://doi.org/10.1016/0076-6879(86)30013-2

Cited by

  1. Genes and enzymes involved in bacterial isoprenoid biosynthesis vol.13, pp.2, 2009, https://doi.org/10.1016/j.cbpa.2009.02.029
  2. Microplate hybridization assay for detection of isoniazid resistance in Mycobacterium tuberculosis vol.42, pp.2, 2009, https://doi.org/10.5483/BMBRep.2009.42.2.081
  3. Biochemistry of the non-mevalonate isoprenoid pathway vol.68, pp.23, 2011, https://doi.org/10.1007/s00018-011-0753-z
  4. Isoprenoid biosynthesis in bacterial pathogens vol.158, pp.Pt_6, 2012, https://doi.org/10.1099/mic.0.051599-0
  5. PlasmodiumIspD (2-C-Methyl-d-erythritol 4-Phosphate Cytidyltransferase), an Essential and Druggable Antimalarial Target vol.1, pp.4, 2015, https://doi.org/10.1021/id500047s
  6. New Insight into Isoprenoids Biosynthesis Process and Future Prospects for Drug Designing in Plasmodium vol.7, 2016, https://doi.org/10.3389/fmicb.2016.01421
  7. Identification and validation of a novel lead compound targeting 4-diphosphocytidyl-2-C-methylerythritol synthetase (IspD) of mycobacteria vol.694, pp.1-3, 2012, https://doi.org/10.1016/j.ejphar.2012.08.012
  8. Molecular and functional characterization of a Brmecp gene encoding 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Brassica rapa vol.39, pp.3, 2012, https://doi.org/10.5010/JPB.2012.39.3.189
  9. Formal synthesis of 4-diphosphocytidyl-2-C-methyl d-erythritol from d-(+)-arabitol vol.68, pp.43, 2012, https://doi.org/10.1016/j.tet.2012.08.020
  10. A structural and functional study on the 2-C-methyl-d-erythritol-4-phosphate cytidyltransferase (IspD) from Bacillus subtilis vol.6, pp.1, 2016, https://doi.org/10.1038/srep36379
  11. Homology modeling of Mycobacterium tuberculosis 2C-methyl-d-erythritol-4-phosphate cytidylyltransferase, the third enzyme in the MEP pathway for isoprenoid biosynthesis vol.16, pp.6, 2010, https://doi.org/10.1007/s00894-009-0615-x