DOI QR코드

DOI QR Code

A 43 kD Protein Isolated from the Herb Cajanus indicus L Attenuates Sodium Fluoride-induced Hepatic and Renal Disorders in Vivo

  • Published : 2007.05.31

Abstract

The herb, Cajanus indicus L, is well known for its hepatoprotective action. A 43 kD protein has been isolated, purified and partially sequenced from the leaves of this herb. A number of in vivo and in vitro studies carried out in our laboratory suggest that this protein might be a major component responsible for the hepatoprotective action of the herb. Our successive studies have been designed to evaluate the potential efficacy of this protein in protecting the hepatic as well as renal tissues from the sodium fluoride (NaF) induced oxidative stress. The experimental groups of mice were exposed to NaF at a dose of 600 ppm through drinking water for one week. This exposure significantly altered the activities of the antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR) and the cellular metabolites such as reduced glutathione (GSH), oxidized glutathione (GSSG), total thiols, lipid peroxidation end products in liver and kidney compared to the normal mice. Intraperitoneal administration of the protein at a dose of 2 mg/kg body weight for seven days followed by NaF treatment (600 ppm for next seven days) normalized the activities of the hepato-renal antioxidant enzymes, the level of cellular metabolites and lipid peroxidation end products. Post treatment with the protein for four days showed that it could help recovering the damages after NaF administration. Time-course study suggests that the protein could stimulate the recovery of both the organs faster than natural process. Effects of a known antioxidant, vitamin E, and a non-relevant protein, bovine serum albumin (BSA) have been included in the study to validate the experimental data. Combining all, result suggests that NaF could induce severe oxidative stress both in the liver and kidney tissues in mice and the protein possessed the ability to attenuate that hepato-renal toxic effect of NaF probably via its antioxidant activity.

Keywords

References

  1. Agency for Toxic Substances and Disease Registry (ATSDR), (1993) Toxicological Profile for Fluorides, Hydrogen Fluoride and Fluorine. U.S. Public Health Service, U.S. Department of Health and Human Services, Altanta, GA, USA.
  2. Ahmad, S., Hiyasat, A., Elbetieha, A. M. and Darmani, H. (2000) Reproductive toxic effects of ingestion of sodium fluoride in female rats. Fluoride 33, 279-284.
  3. Bendich, A., Machlin, I. J., Scandurra, O., Burton, G. W. and Wayner, D. D. M. (1986) The antioxi-dant role of vitamin C. Adv. Free Radic. Biol. Med. 2, 419-444. https://doi.org/10.1016/S8755-9668(86)80021-7
  4. Bezerra de Menezes, L. M., Volpato, M. C., Rosalen, P. L. and Cury J. A. (2003) Bone as a biomarker of acute fluoride toxicity. Forensic Sci Int. 137, 209-214. https://doi.org/10.1016/j.forsciint.2003.08.001
  5. Bhattacharjee, R. and Sil, P. C. (2006a) Protein isolate from the herb, Phyllanthus niruri, protects liver from acetaminophen induced toxicity. Biomed. Res. 17, 75-79.
  6. Bhattacharjee, R. and Sil, P. C. (2006b) The protein fraction of Phyllanthus niruri plays a protective role against acetaminophen induced hepatic disorder via its antioxidant properties. Phytother. Res. 20, 595-601. https://doi.org/10.1002/ptr.1933
  7. Bhattacharjee, R. and Sil, P. C. (2006c) Protein isolate from the herb, Phyllanthus niruri L. (Euphorbiaceae), plays hepatoprotective role against carbon tetrachloride induced liver damage via its antioxidant properties. Food Chem. Toxicol. 45, 817-826.
  8. Bhattacharjee, R. and Sil, P. C. (2007) Protein isolate from the herb, Phyllanthus niruri, modulates carbon tetrachloride-induced cytotoxicity in hepatocytes. Toxicol. Mech. Methods 17, 41-47. https://doi.org/10.1080/15376510600970034
  9. Bonaventura, J., Schroeder, W. A. and Fang, S. (1972) Human erythrocyte catalase: an improved method of isolation and a revalution of reported properties. Arch Biochem Biophys. 150, 606-617. https://doi.org/10.1016/0003-9861(72)90080-X
  10. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  11. Bruck, R., Aeed H, Schey, R., Matas, Z., Reifen, R., Zaiqer, G., Hochman, A. and Avni, Y. (2002) Pyrrolidine dithiocarbamate protects against thioacetamide-induced fulminant hepatic failure in rats. J. Hepatol. 36, 370-377. https://doi.org/10.1016/S0168-8278(01)00290-2
  12. Buechter, D. D. (1988) Free radicals and oxygen toxicity. Pharm. Res. 5, 253-260. https://doi.org/10.1023/A:1015914418014
  13. CCIS (1994): Computerized Clinical Information System. Denver, CO, Micromedex Inc.
  14. Carlberg, I. and Mannervik, B. (1985) Glutathione reductase. Methods Enzymol. 113, 484-490. https://doi.org/10.1016/S0076-6879(85)13062-4
  15. Campos, R., Gorrido, A., Guerra, R. and Valenznela, A. (1989) Silybin dihemisuccinate protects against glutathione depletion and lipid peroxidation induced by acetaminophen on rat liver. Planta. Med. 55, 417-419. https://doi.org/10.1055/s-2006-962055
  16. Chatterjee, M. and Sil, P. C. (2006a) Hepatoprotective effect of aqueous extract of Phyllanthus niruri on nimesulide-induced oxidative stress in vivo. Indian J. Biochem. Biophys. 43, 299-305.
  17. Chatterjee, M., Sarkar, K. and Sil, P. C. (2006b) Herbal (Phyllanthus niruri) protein isolate protects liver from nimesulide induced oxidative stress. Pathophysiology 13, 95-102. https://doi.org/10.1016/j.pathophys.2006.02.003
  18. Choudhuri, B. R. and Poddar, M. K. (1984) Andrographolide and kalmegh (Andrographis paniculata) extract: in vivo and in vitro effect on hepatic lipid peroxidation. Methods Find Exp. Clin. Pharmacol. 6, 481-485.
  19. Chlubek, D. (2003) Fluoride and oxidative stress. Fluoride 36, 217-228.
  20. Cicek, E., Aydin, G., Akdogan, M. and Okutan, H. (2005) Effects of chronic ingestion of sodium fluoride on myocardium in a second generation of rats. Hum. Exp. Toxicol. 24, 79-87. https://doi.org/10.1191/0960327105ht505oa
  21. Cottone, S., Palermo, A., Vaccaro, F., Vadala, A., Busceme, B. and Cerasola, G. (2006) Oxidative stress and inflammation in long-term renal transplanted hypertensives. Clin. Nephrol. 66, 32-38. https://doi.org/10.5414/CNP66032
  22. Dabek, A. W. D. and McKenzie, A. D. (1995) Survey of lead, cadmium, fluoride, nickel, and cobalt in food composites and estimation of dietary intakes of these elements by Canadians in 1986-1988. J. AOAC Int. 78, 897-909.
  23. De leve, L. and Kaplowitz, N. (1991) Glutathione metabolism and its role in hepatotoxicity. Pharmacol. Ther. 52, 287-305. https://doi.org/10.1016/0163-7258(91)90029-L
  24. Donatus, I. A. and Sardjoko, V. N. P. (1990) Cytotoxic and cytoprotective activities of curcumin. Effects on paracetamolinduced cytotoxicity, lipid peroxidation and glutathione depletion in rat hepatocytes. Biochem. Pharmacol. 39, 1869-1875. https://doi.org/10.1016/0006-2952(90)90603-I
  25. Ellman, G. L. (1959) Tissue sulphydryl group. Arch. Biochem. Biophy. 82, 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
  26. Esterbauer, H. and Cheeseman, K. H. (1990) Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods. Enzymol. 186, 407-421. https://doi.org/10.1016/0076-6879(90)86134-H
  27. Firuzi, O., Fuksa, L., Spadaro, C., Bousova, I., Riccieri, V., Spadaro, A., Petrucci, R., Marrosu, G. and Saso, L. (2006) Oxidative stress parameters in different systemic rheumatic diseases. J Pharm. Pharmacol. 58, 951-957. https://doi.org/10.1211/jpp.58.7.0010
  28. Fridovich, I. (1972) Superoxide radical and superoxide dismutase. Acc. Chem. Res. 5, 321-323. https://doi.org/10.1021/ar50058a001
  29. Galbussera, A., Beretta, S., Brighina, L., Garofalo, R., Andreoni, S., Piolty, R. and Ferrarese, C. (2006) Oxidative stress in peripheral blood mononuclear cells from patients with Parkinson's disease: negative correlation with levodopa dosage. Neurobiol. Dis. 23, 36-43. https://doi.org/10.1016/j.nbd.2006.01.013
  30. Ghosh, A. and Biswas, K. (1973) Bhartiya Banausadhi (ed) A. Chatterjee, Calcutta University Press, Calcutta. 2, 332-334.
  31. Ghosh, A., Sarkar, K. and Sil, P. C. (2006) Protective effect of a 43kD protein from the leaves of the herb, Cajanus indicus L on chloroform induced hepatic-disorder. J. Biochem. Mol. Biol. 39, 197-207. https://doi.org/10.5483/BMBRep.2006.39.2.197
  32. Ghosh, A. and Sil, P. C. (2006) A 43kD protein from the leaves of the herb, Cajanus indicus L, modulates chloroform induced hepatotoxicity in vitro. Drug. Chem. Toxicol. 29, 397-413. https://doi.org/10.1080/01480540600837944
  33. Gritsan, N. P., Miller, G. W. and Schumatkov, G. G. (1995) Correlation among heavy metals and fluoride in soil, air and plants in relation to environmental damage. Fluoride 28, 180-188.
  34. Guelman, L. R., Cabana, J. L., del Lujan Pogotto, R. M. and Zieher, L. M. (2005) Ionizing radiation-induced damage on developing cerebellar granule cells cultures can be prevented by an early amifostine post-treatment. Int. J. Dev. Neurosci. 23, 1-7. https://doi.org/10.1016/j.ijdevneu.2004.10.001
  35. Guo, X. Y., Sun, G. F. and Sun, Y. C. (2003) Oxidative stress from fluoride-induced hepatotox-icity in rats. Fluoride 36, 25-29.
  36. Gustafsson, A., Asman, B. and Bergstrom, K. (2000) Cigarette smoking as an aggravating factor in inflammatory tissuedestructive diseases. Increase in tumor necrosis Factor-alpha priming of peripheral neutrophils measured as generation of oxygen radicals. Int. J. Clin. Lab. Res. 30, 187-190. https://doi.org/10.1007/s005990070005
  37. Habig, W. H. and Jakoby, W. B. (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130-7139.
  38. Hayes, J. D. and Pulford, D. J. (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 30, 445-600. https://doi.org/10.3109/10409239509083491
  39. Hissin, P. J. and Hilf, R. A. (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 74, 214-226 https://doi.org/10.1016/0003-2697(76)90326-2
  40. Hsu, C. Y. (2006) Antioxidant activity of extract from Polygonum aviculare L. Biol. Res. 39, 281-288.
  41. Jones, P. and Suggett, A. (1968) The catalase–hydrogen peroxide system. A theoretical appraisal of the mechanism of catalase action. Biochem. J. 110, 621-629. https://doi.org/10.1042/bj1100621
  42. Kakkar, P., Das, B. and Viswanathan, P. N. (1984) A modified spectrophotometric assay of superoxide dismutase. Ind. J. Biochem. Biophys. 21, 130-132.
  43. Karthikeyan, K., Sarala Bai, B. R., Gauthaman, K., Sathish, K. S. and Niranjali Devaraj, S. (2003) Cardioprotective effect of the alcoholic extract of Terminalia arjuna bark in an in vivo model of myocardial ischemic reperfusion injury. Life Sci. 73, 2727-2739. https://doi.org/10.1016/S0024-3205(03)00671-4
  44. Ketterer, B. (1986) Detoxification reactions of glutathione and glutathione reductase. Xenobiotca 16, 957-975. https://doi.org/10.3109/00498258609038976
  45. Koyu, A., Ozguner, F., Caliscan, S. and Karaca, H. (2005) Preventive effect of vitamin E on iron-induced oxidative damage in rabbit. Toxicol. Ind. Health 21, 239-242. https://doi.org/10.1191/0748233705th233oa
  46. Lantz, O., Jouvin, M. H., De Vemejoul M. C. and Druet, P. (1987) Fluoride-induced chronic renal failure. Am. J. Kidney Dis. 10, 136-139. https://doi.org/10.1016/S0272-6386(87)80046-X
  47. Latifah, R. and Razak, I. A. (1989) Fluoride levels in mother's milk. J. Pedod. 13, 149-154.
  48. Lee, S. J., Oh, P. S., Ko, J. H., Lim K. and Lim K. T. (2006) Protective effect of glycoprotein isolated from Ulmus davidiana Nakai on carbon tetrachloride-induced mouse liver injury. J. Pharm. Pharmacol. 58, 143-52. https://doi.org/10.1211/jpp.58.1.0018
  49. Lu, S. C., Huang, Z. Z., Yang, H. and Tsukamoto, H. (1999) Effect of thioacetamide on the hepatic expression of gamma-glutamylcysteine synthetase subunits in the rat. Toxicol. Appl. Pharmacol. 159, 161-168. https://doi.org/10.1006/taap.1999.8729
  50. Manna, P., Sinha, M. and Sil, P. C. (2006) Aqueous extract of Terminalia arjuna prevents carbon tetrachloride induced hepatic and renal disorders. BMC Complement and Altern Med. 6, 33. https://doi.org/10.1186/1472-6882-6-33
  51. Maurer et al. (1990) Fluoride an equivocal carcinogen. J. Natl. Cancer Inst. 82, 1118-1126. https://doi.org/10.1093/jnci/82.13.1118
  52. Muller, D., Sommer, M., Kretzschmar, M., Zimmermann, T., Buko, V. U., Lukivskaya, O. and Darqel, R. (1991) Lipid peroxidation in thioacetamide induced macronodular rat livercirrhosis. Arch. Toxicol. 65, 199-203. https://doi.org/10.1007/BF02307309
  53. Muriel, P., Garciapina, T., Perez-Alvarez, V. and Mourelle, M. (1992) Silymarin protectsagainst paracetamol-induced lipid peroxidation and liver damage. J. Appl. Toxicol. 12, 439-442. https://doi.org/10.1002/jat.2550120613
  54. National Research Council, Food and Nutrition Board (1980) Recommended daily allowances, 9th ed. Washington, DC, National Academy of Sciences, pp. 156-159.
  55. Neurath, C. (2005) Tooth decay trends for 12 year old in nonflupridated and fluoridated countries. Fluoride 38, 324-325.
  56. Nishikimi, M., Rao, N. A. and Yagi, K. (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 46, 849-854. https://doi.org/10.1016/S0006-291X(72)80218-3
  57. Novitskiy, G., Traore, K., Wang, L., Trush, M. A. and Mezey, E. (2006) Effects of ethanol and acetaldehyde on reactive oxygen species production in rat hepatic stellate cells. Alcohol Clin. Exp. Res. 30, 1429-1435. https://doi.org/10.1111/j.1530-0277.2006.00171.x
  58. Oh P. S., Lee S. J. and Lim K. T. (2006) Plant originated glycoprotein has anti-oxidative and anti-inflammatory effects on dextran sulfate sodium-induced colitis in mouse. J. Biomed. Sci. 13, 549-560. https://doi.org/10.1007/s11373-006-9083-9
  59. Sarkar, K., Ghosh, A., Kinter, A., Mazumder, B. and Sil, P. C. (2006) Purification and characterization of a 43kD hepatoprotective protein from the herb Cajanus indicus L. Protein. J. 25, 411-421. https://doi.org/10.1007/s10930-006-9030-7
  60. Sarkar, K., Ghosh, A. and Sil, P. C. (2005) Preventive and curative role of a 43kD protein from the leaves of the herb Cajanus indicus L on thioacetamide-induced hepatotoxicity in vivo. Hepatol. Res. 33, 39-49. https://doi.org/10.1016/j.hepres.2005.06.007
  61. Sarkar, K. and Sil, P. C. (2006a) A 43kDa protein from the herb Cajanus indicus L. protects thioacetamide induced cytotoxicity in hepatocytes. Toxicol in Vitro 20, 634-640. https://doi.org/10.1016/j.tiv.2005.11.003
  62. Sarkar, K. and Sil, P. C. (2006b) Attenuation of acetaminopheninduced hepatotoxicity in vivo and in vitro by a 43 kD protein isolated from the herb, Cajanus indicus L. Toxicol. Mech. Methods (In press).
  63. Sarkar, M. K., Sarkar, K., Bhattacharjee, R., Chatterjee, M. and Sil, P. C. (2005) Curative role of the aqueous extract of the herb, Phyllanthus niruri, against nimesulide induced oxidative stress in murine liver. Biomed. Res. 16, 171-176.
  64. Scandalios, J. G. (2002) The rise of ROS. TIBS 27, 483-486.
  65. Schreck, R., Albermann, K. and Baeuerle, P. A. (1992) Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells. Free. Radic. Res. Commun. 17, 221-237. https://doi.org/10.3109/10715769209079515
  66. Sedlak, J. and Lindsay, R. H. (1958) Estimation of total, proteinbound, and non protein sulfhydryl groups in tissue with Ellman's reagent. Anal. Biochem. 24/25, 192-205.
  67. Shanthakumari, D., Srinivasalu, S. and Subramanian, S. (2004) Effect of fluoride intoxication on lipid peroxidation and antioxidant status in experimental rats. Toxicology 204, 219-228. https://doi.org/10.1016/j.tox.2004.06.058
  68. Sharma, A. and Chinoy, N. J. (1998) Role of free radicals in fluoride-induced toxicity in liver and kidney of mice and its reversal. Fluoride 31, 26.
  69. Shashi, A. and Thapar, S. P. (2001) Histopathology of myocardial damage in experimental fluorosis in rabbits. Fluoride 34, 143-150
  70. Shi, L. Q. and Zheng, R. L. (2006) DNA damage and oxidative stress induced by Helicobacter pylori in gastric epithelial cells: protection by vitamin C and sodium selenite. Pharmazie. 61, 631-637
  71. Shivarajashankara, Y. M., Shivashankara, A. R., Gopalakrishna Bhat, P. and Hanumanth Rao, S. (2002) Brain lipid peroxidation and antioxidant systems of young rats in chronic fluoride intoxication. Fluoride 35, 197-203.
  72. Sicinska, P., Bukowska, B., Michalowicz, J and Duda, W. (2006) Damage of cell membrane and antioxidative system in human erythrocytes icubated with microcystin-LR in vitro. Toxicon 47, 387-397. https://doi.org/10.1016/j.toxicon.2005.12.006
  73. Sies, H. (1991) Role of reactive oxygen species in biological processes. Klin. Wochenschr. 69, 965-968. https://doi.org/10.1007/BF01645140
  74. Singh, U. and Jialal, I. (2006) Oxidative stress and atherosclerosis. Pathophysiology 13, 129-142. https://doi.org/10.1016/j.pathophys.2006.05.002
  75. Smith, I. K., Vierheller, T. L. and Thorne, C. A. (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5'- dithiobis (2-nitrobenzoic acid). Anal. Biochem. 175, 408-413. https://doi.org/10.1016/0003-2697(88)90564-7
  76. Susheela, A. K. and Bhatnagar, M. (2002) Reversal of fluoride induced cell injury through elimination of fluoride and consumption of diet rich in essential nutrients and antioxidants. Mol. Cell. Biochem. 234-235, 335-340.
  77. Stannard, J. G., Skim, Y. S., Kirtsineli, M., Labropoulou, P. and Tsamtsouris, A. (1991) Fluoride Levels and Fluoride Contamination of Fruit Juices. J. Clin. Pediatr. Dent. 16, 38-40.
  78. Suji, J. and Sicakami, S. (2006) DNA damage by free radical production by aminoguanidine. An. N.Y. Acad. SCAI. 1067, 191-199. https://doi.org/10.1196/annals.1354.023
  79. Touyz, R. M. (2000) Oxidative stress and vascular damage in hypertension. Current Hypertension Reports 2, 98-105. https://doi.org/10.1007/s11906-000-0066-3
  80. Tsoi, A. Y., Ng, T. B. and Fong, W. P. (2005) Antioxidative effect of a chymotrypsin inhibitor from Momordica cochinchinesis (Cucurbitaceae) seeds in primary rat hepatocyte culture. J. Pep. Sci. 11, 665-668. https://doi.org/10.1002/psc.666
  81. Tsutsui, H. (2006) Mitochondrial oxidative stress and heart failure. Intern. Med. 45, 809-813. https://doi.org/10.2169/internalmedicine.45.1765
  82. Unander, D.W., Webster, G. L. and Blumberg, B. S. (1995) Usage and bioassays in Phyllanthus (Euphorbiaceae). IV. Clustering of antiviral uses and other effects. J. Ethnopharmacol. 45,1-18 https://doi.org/10.1016/0378-8741(94)01189-7
  83. U. S. Department of Health and Human Services, (1993) Registry of Toxic Effects of Chemical Substances (RTECS, online database). National Toxicology Information Program, National Library of Medicine, Bethesda, MD.
  84. Van Vleet, T. R. and Schnellmann, R. G. (2003) Toxic nephropathy: environmental chemicals. Semin Nephrol. 23, 500-508. https://doi.org/10.1016/S0270-9295(03)00094-9
  85. Wilcox, C. S. (2002) Reactive oxygen species: roles in blood pressure and kidney function. Current Hypertension Reports 4, 160-166. https://doi.org/10.1007/s11906-002-0041-2
  86. World Health Organization (WHO), Geneva. (1984) Fluorine and fluorides. (Environmental Health Criteria, No. 36).
  87. Yiamouyiannis, J. (1993) Fuoride, The Aging Factor. Health Action Press.
  88. Zhao, L. B., Liang, D. and Liang, W. W. L. (1996) Effects of a high fluoride water supply on children's intelligence. Fluoride 29, 190-192

Cited by

  1. A 43 kD protein from the leaves of the herb Cajanus indicus L. modulates doxorubicin induced nephrotoxicity via MAPKs and both mitochondria dependent and independent pathways vol.94, pp.6, 2012, https://doi.org/10.1016/j.biochi.2012.03.003
  2. Fluoride-induced changes in haem biosynthesis pathway, neurological variables and tissue histopathology of rats vol.30, pp.1, 2010, https://doi.org/10.1002/jat.1474
  3. Cajanus indicus leaf protein: Beneficial role in experimental organ pathophysiology. A review vol.18, pp.4, 2011, https://doi.org/10.1016/j.pathophys.2011.05.001
  4. Limonia fruit as a food supplement to regulate fluoride-induced hyperglycaemia and hyperlipidaemia vol.93, pp.2, 2013, https://doi.org/10.1002/jsfa.5762
  5. A Protein from Cajanus indicus Spreng Protects Liver and Kidney against Mercuric Chloride-Induced Oxidative Stress vol.31, pp.9, 2008, https://doi.org/10.1248/bpb.31.1651
  6. Combined Influence of Intermittent Exercise and Temperature Stress on the Modulation of Fluoride Toxicity vol.148, pp.1, 2012, https://doi.org/10.1007/s12011-012-9338-4
  7. Ameliorative effect of tamarind leaf on fluoride-induced metabolic alterations vol.17, pp.6, 2012, https://doi.org/10.1007/s12199-012-0277-7
  8. Effects of fluorides on apoptosis and activation of human umbilical vein endothelial cells vol.18, pp.3, 2012, https://doi.org/10.1111/j.1601-0825.2011.01873.x
  9. Excessıve fluorıde ıntake alters the MMP-2, TIMP-1 and TGF-β levels of perıodontal soft tıssues: an experımental study ın rabbıts vol.16, pp.6, 2012, https://doi.org/10.1007/s00784-011-0652-6
  10. Protection of acetaminophen induced mitochondrial dysfunctions and hepatic necrosis via Akt-NF-κB pathway: Role of a novel plant protein vol.177, pp.2, 2009, https://doi.org/10.1016/j.cbi.2008.09.006
  11. A multigrain protein enriched diet mitigates fluoride toxicity vol.50, pp.3, 2013, https://doi.org/10.1007/s13197-011-0367-3
  12. Doxorubicin-induced neurotoxicity is attenuated by a 43-kD protein from the leaves ofCajanus indicusL. via NF-κB and mitochondria dependent pathways vol.46, pp.6, 2012, https://doi.org/10.3109/10715762.2012.678841