DOI QR코드

DOI QR Code

Theoretical investigation for the molecular structure and Charge transport property analysis of C16H16O3 as a candidate of liquid-crystal

액정 후보 물질로서 C16H16O3의 분자구조 및 전하이동성 특성분석에 관한 연구

  • 박혜민 (한남대학교 생명나노과학대학 생명나노과학부 화학전공) ;
  • 김승준 (한남대학교 생명나노과학대학 생명나노과학부 화학전공)
  • Received : 2007.01.11
  • Accepted : 2007.01.24
  • Published : 2007.02.28

Abstract

The geometrical parameters, total and relative energies, vibrational frequencies, the HOMO-LUMO energy gap, and reorganization energies for the neutral molecule, anion, and cation of $C_{16}H_{16}O_3$ have been determined using density functional method (DFT). The highest level of theory employed in this study is $B3LYP/6-311G^{**}$. Harmonic vibrational frequencies were determined at the $B3LYP/6-311G^{**}$ level of theory. All positive vibrational frequencies were obtained to confirm minimum structures. The HOMO-LUMO energy gap and reorganization energies were calculated to predict the charge transport property of liquid-crystal.

$C_{16}H_{16}O_3$의 중성분자, 음이온, 그리고 양이온에 대하여 양자역학적 방법을 사용하여, 분자구조, 진동주파수 그리고 HOMO-LUMO 차이와 재편성에너지(reorganization energy)를 통한 전하이동성 특성을 연구하였다. 분자구조는 $B3LYP/6-311G^{**}$ 수준까지 최적화 하여 안정한 구조를 찾았다. 또한 진동주파수를 계산하여 안정한 상태의 분자구조를 확인하였으며, 액정의 전하이동성 특성을 분석하기 위해서 HOMO-LUMO 에너지 차이와 재편성에너지를 계산하였다. $C_{16}H_{16}O_3$의 HOMO-LUMO 에너지 차이는 중성분자의 경우 4.45 eV, 음이온과 양이온에 대해서는 각각 1.46 eV, 1.53 eV로 계산되었고, 재편성에너지는 음이온의 경우 0.59 eV, 그리고 양이온의 경우 0.43 eV로 계산되었다.

Keywords

References

  1. F. Reinitzer, Monatsh. Chem. 9(1), 421-441 (1888) https://doi.org/10.1007/BF01516710
  2. N. Kuze. H. Fujiwara, H. Takeuchi, T. Egawa. and S. Konaka, J. Phys. Chem. A, 103(16), 3054-3061 (1999)
  3. S. V. Sereda, T. V. Ti.mofeeva, M. Y. Antipin, and Y. T. Struchkov, Liq. Cryst. 11(6), 839-850 (1992) https://doi.org/10.1080/02678299208030689
  4. R. Boese, M. Y. Antipin, M. Nussbaumer, and D. Blser, Liq. Cryst. 12(3), 431-440 (1992) https://doi.org/10.1080/02678299208031059
  5. R. Bhattacharyya and A. Kumar, Chemical Physics Letters. 372(1), 35-44 (2003) https://doi.org/10.1016/S0009-2614(03)00347-6
  6. K. Tozaki, H. Hayashi, and K. Yamaguchi, J. Phys. Chem. B, 108(35), 13163-13176 (2004) https://doi.org/10.1021/jp040135h
  7. S.-C. Yu, Y. Choi, and M. Lee, Macromolecules, 33(17), 6527-6533 (2000) https://doi.org/10.1021/ma991933m
  8. V. Krishnakumara, G. Kereszturyb, T. Sundiusc, and R. Ramasamy, Journal of Molecular Structure, 702(1), 9- 21 (2004) https://doi.org/10.1016/j.molstruc.2004.06.004
  9. V. Lemaur, D. A. Filho, V. Coropceanu, M. Lehmann, Y. Geerts, J. Piris, M. G. Debije, A. M. Craats, K. Sent-hilkumar, L. D. A. Siebbeles, J. M. Warman, J. Bredas, and J. Cornil, J. Am. Chem. Soc., 126(10), 3271-3279 (2004) https://doi.org/10.1021/ja037933q
  10. H. B. Schlegel, J. Comput. Chem., 3(2), 214-218 (1982) https://doi.org/10.1002/jcc.540030212
  11. C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, J. Comput. Chem., 17(1), 49-56 (1996) https://doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0
  12. P. Pulay, In Modern Theoretical Chemistry, H. F. Schaefer, Ed. Plenum, New York, 4, 153 (1977)
  13. J. D. Goddard, N. C. Handy, and H. F. Schaefer, J. Chem. Phys., 71(4), 1525-1530 (1979) https://doi.org/10.1063/1.438494
  14. P. Hohenberg and W. Kohn, Phys. Rev., 136(3B), B864-B871 (1964) https://doi.org/10.1103/PhysRev.136.B864
  15. A. D. Becke, J. Chem. Phys., 98(7), 5648-5652 (1993) https://doi.org/10.1063/1.464913
  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M.Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, GAUSSIAN 98, Revision A.7, Gaussian, Inc., Pittsburgh, PA, 1998
  17. A. Cabana, J. Bachand, and J. Giguere, Can. J. Phys., 52(12), 1949-1955 (1974) https://doi.org/10.1139/p74-256
  18. J. L. Bredas, J. P. Calbert, D. A. da Silva Filho, and J. Cornil, Proc. Natl. Acad. Sci. U.S.A. 99(9), 5804-5809 (2002)
  19. C. Majumder, H. Mizuseki, and Y. Kawazoe, Journal of Molecular Structure, 681(1), 65-69 (2004) https://doi.org/10.1016/j.theochem.2004.05.013