DOI QR코드

DOI QR Code

Enhanced Expression of High-affinity Iron Transporters via H-ferritin Production in Yeast

  • Kim, Kyung-Suk (Faculty of Biological Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Chang, Yu-Jung (Faculty of Biological Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Chung, Yun-Jo (Faculty of Biological Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Park, Chung-Ung (Faculty of Biological Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Seo, Hyang-Yim (Faculty of Biological Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University)
  • Published : 2007.01.31

Abstract

Our heterologous expression system of the human ferritin H-chain gene (hfH) allowed us to characterize the cellular effects of ferritin in yeasts. The recombinant Saccharomyces cerevisiae (YGH2) evidenced impaired growth as compared to the control, which was correlated with ferritin expression and with the formation of core minerals. Growth was recovered via the administration of iron supplements. The modification of cellular iron metabolism, which involved the increased expression of high-affinity iron transport genes (FET3 and FTR1), was detected via Northern blot analysis. The findings may provide some evidence of cytosolic iron deficiency, as the genes were expressed transcriptionally under iron-deficient conditions. According to our results examining reactive oxygen species (ROS) generation via the fluorescence method, the ROS levels in YGH2 were decreased compared to the control. It suggests that the expression of active H-ferritins reduced the content of free iron in yeast. Therefore, present results may provide new insights into the regulatory network and pathways inherent to iron depletion conditions.

Keywords

References

  1. Anderson, G. A., Dancis, A., Roman, D. G. and Klausner, R. D. (1994) Ferric iron reduction and iron uptake in eucaryotes: studies with the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe; In Prog. Iron Res. Hershko et al. (eds.), pp. 81-89, Plenum Press, New York.
  2. Askwith, C. and Kaplan, J. (1997) An oxidase-permease-based iron transport system in Schizosaccharomyces pombe and its expression in Saccharomyces cerevisiae. J. Biol. Chem. 272, 401-405. https://doi.org/10.1074/jbc.272.1.401
  3. Aust, S. D. (1995) Ferritin as a source of iron and protection from iron-induced toxicities. Toxicol. Lett. 82/83, 941-944. https://doi.org/10.1016/0378-4274(95)03605-9
  4. Cadenas, E. (1989) Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 58, 79-110. https://doi.org/10.1146/annurev.bi.58.070189.000455
  5. Chasteen, N. D. and Harrison, P. M. (1999) Mineralization in ferritin: an efficient means of iron storage. J. Struct. Biol. 126, 182-194. https://doi.org/10.1006/jsbi.1999.4118
  6. Cozzi, A., Corsi, B., Levi, S., Santambrogio, P., Albertini, A. and Arosio, P. (2000) Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: in vivo role of ferritin ferroxidase activity. J. Biol. Chem. 275, 25122-25129. https://doi.org/10.1074/jbc.M003797200
  7. Dix, D. R., Bridgham, J. T., Broderius, M. A., Byersdorfer, C. A. and Eide, D. J. (1994) The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. J. Biol. Chem. 269, 26092-26099.
  8. Eide, D., Davis-Kaplan, S. R., Jordan, I., Sipe, D. and Kaplan, J. (1992) Regulation of iron uptake in Saccharomyces cerevisiae. The ferrireductase and Fe(II) transporter are regulated independently. J. Biol. Chem. 267, 20774-20781.
  9. Eide, D. J. (1998) The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu. Rev. Nutr. 18, 441-469. https://doi.org/10.1146/annurev.nutr.18.1.441
  10. Epsztejn, S., Glickstein, H., Picard, V., Slotki, I. N., Breuer, W., Beaumont, C. and Cabantchik, Z. I. (1999) H-ferritin subunit overexpression in erythroid cells reduces the oxidative stress response and induces multidrug resistance properties. Blood 94, 3593-3603.
  11. Harrison, P. M. and Arosio, P. (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta 1275, 161-203. https://doi.org/10.1016/0005-2728(96)00022-9
  12. Hess, H. H., Lees, M. B. and Derr, J. E. (1978) A linear Lowry- Folin assay for both water-soluble and sodium dodecylsulfatesolubilized proteins. Anal. Biochem. 85, 295-300. https://doi.org/10.1016/0003-2697(78)90304-4
  13. Lesuisse, E., Raguzzi, F. and Crichton, R. R. (1987) Iron uptake by the yeast Saccharomyces cerevisiae: involvement of a reduction step. J. Gen. Microbiol. 133, 3229-3236.
  14. Levi, S., Santambrogio, P., Cozzi, A., Rovida, E., Corsi, B., Tamborini, E., Spada, S., Albertini, A. and Arosio, P. (1994) The role of the L-chain in ferritin iron incorporation. Studies of homo and heteropolymers. J. Mol. Biol. 238, 649-654. https://doi.org/10.1006/jmbi.1994.1325
  15. Madeo, F., Frohlich, E., Ligr, M., Grey, M., Sigrist, S. J., Wolf, D. H. and Frohlich, K. U. (1999) Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol. 145, 757-767. https://doi.org/10.1083/jcb.145.4.757
  16. Orino, K., Lehman, L., Tsuji, Y., Ayaki, H., Torti, S. V. and Torti, F. M. (2001) Ferritin and the response to oxidative stress. Biochem. J. 357, 241-247. https://doi.org/10.1042/0264-6021:3570241
  17. Picard, V., Epsztejn, S., Santambrogio, P., Cabantchik, Z. I. and Beaumont, C. (1998) Role of ferritin in the control of the labile iron pool in murine erythroleukemia cells. J. Biol. Chem. 273, 15382-15386. https://doi.org/10.1074/jbc.273.25.15382
  18. Picard, V., Renaudie, F., Porcher, C., Hentze, M. W., Grandchamp, B. and Beaumont, C. (1996) Overexpression of the ferritin H subunit in cultured erythroid cells changes the intracellular iron distribution. Blood 87, 2057-2064.
  19. Sambrook, J., Fritch, E. E. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., pp. 362-371, Cold Spring Harbor Laboratory Press, New York, USA.
  20. Santambrogio, P., Levi, S., Cozzi, A., Rovida, E., Albertini, A. and Arosio, P. (1993) Production and characterization of recombinant heteropolymers of human ferritin H and L chains. J. Biol. Chem. 268, 12744-12748.
  21. Schafer, G., Purschke, W. G., Gleissner, M. and Schmidt, C. L. (1996) Respiratory chains of archaea and extremophiles. Biochim. Biophys. Acta 1275, 16-20. https://doi.org/10.1016/0005-2728(96)00043-6
  22. Seo, H.-Y (2002) Heterologous expression of human ferritin Hand L-chain genes in Saccharomyces cerevisiae. Master thesis. Chonbuk National University.
  23. Seo, H.-Y., Chung, Y.-J., Kim, S.-J., Park, C.-U. and Kim, K.-S. (2003) Enhanced expression and functional characterization of the human ferritin H- and L-chain genes in Saccharomyces cerevisiae. Appl. Microbiol. Biotech. 63, 57-63. https://doi.org/10.1007/s00253-003-1350-3
  24. Stearman, R., Yuan, D. S., Yamaguchi-Iwai, Y., Klausner, R. D. and Dancis, A. (1996) A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271, 1552-1557. https://doi.org/10.1126/science.271.5255.1552
  25. Umbreit, J. (2005) Iron deficiency: a concise review. Am. J. Hematol. 78, 225-231. https://doi.org/10.1002/ajh.20249
  26. Yamaguchi-Iwai, Y., Dancis, A., and Klausner, R. D. (1995) AFT1, a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J. 14, 1231-1239.
  27. Yuan, X., Cong, Y., Hao, J., Shan, Y., Zhao, Z, Wang, S. and Chen, J. (2004) Regulation of LIP level and ROS formation through interaction of H-ferritin with G-CSF receptor. J. Mol. Biol. 339, 131-144. https://doi.org/10.1016/j.jmb.2004.03.027

Cited by

  1. Environmental responses and the control of iron homeostasis in fungal systems vol.97, pp.3, 2013, https://doi.org/10.1007/s00253-012-4615-x
  2. Use of conventional and -omics based methods for health claims of dietary antioxidants: a critical overview vol.99, pp.E-S1, 2008, https://doi.org/10.1017/S0007114508965752
  3. Soybean Ferritin Expression in Saccharomyces cerevisiae Modulates Iron Accumulation and Resistance to Elevated Iron Concentrations vol.82, pp.10, 2016, https://doi.org/10.1128/AEM.00305-16