DOI QR코드

DOI QR Code

Molecular Analysis and Expression Patterns of the 14-3-3 Gene Family from Oryza Sativa

  • Yao, Yuan (Laboratory of Molecular Biology and MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University) ;
  • Du, Ying (Laboratory of Molecular Biology and MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University) ;
  • Jiang, Lin (Laboratory of Molecular Biology and MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University) ;
  • Liu, Jin-Yuan (Laboratory of Molecular Biology and MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University)
  • Published : 2007.05.31

Abstract

The ubiquitous family of 14-3-3 proteins functions as regulators in a variety of physiological processes. Eight rice 14-3-3 genes, designated OsGF14a through h, were identified from an exhaustive search of the genome database. Comparisons of deduced amino acid sequences reveal a high degree of identity among members of the OsGF14 family and reported Arabidopsis 14-3-3 proteins. A phylogenetic study indicates that OsGF14s contain both $\varepsilon$ and non-$\varepsilon$ forms, which is also confirmed by a structural analysis of OsGF14 genes. Furthermore, transcripts of OsGF14b, OsGF14c, OsGF14d, OsGF14e, OsGF14f and OsGF14g were detected in rice tissues. Their different expression patterns, the different effects of environmental stresses and plant hormones on their transcription levels, and the different complementary phenotypes in yeast 14-3-3 mutants not only indicates that OsGF14s are responsive to various stress conditions and regulated by multiple signaling pathways, but also suggests that functional similarity and diversity coexist among the members of OsGF14 family.

Keywords

References

  1. Bachmann, M., Huber, J. L., Athwal, G. S., Wu, K., Ferl, R. J. and Huber, S. C. (1996) 14-3-3 proteins associate with the regulatory phosphorylation site of spinach leaf nitrate reductase in an isoform-specific manner and reduce dephosphorylation of Ser-543 by endogenous protein phosphatases. FEBS Lett. 398, 26-30 https://doi.org/10.1016/S0014-5793(96)01188-X
  2. Booij, P. P., Roberts, M. R., Vogelzang, S. A., Kraayenhof, R. and De Boer, A. H. (1999) 14-3-3 proteins double the number of outward-rectifying $K^{+}$ channels available for activation in tomato cells. Plant J. 20, 673-683 https://doi.org/10.1046/j.1365-313X.1999.00643.x
  3. Cooper, B., Clarke, J. D., Budworth, P., Kreps, J., Hutchison, D., Park, S., Guimil, S., Dunn, M., Luginbuhl, P., Ellero, C., Goff, S. A. and Glazebrook, J. (2003a) A network of rice genes associated with stress response and seed development. Proc. Natl. Acad. Sci. USA 100, 4945-4950 https://doi.org/10.1073/pnas.0737574100
  4. Cooper, B., Hutchison, D., Park, S., Guimil, S., Luginbuhl, P., Ellero, C., Goff, S. A. and Glazebrook, J. (2003b) Identification of rice (Oryza sativa) proteins linked to the cyclin-mediated regulation of the cell cycle. Plant Mol. Biol. 53, 273-279 https://doi.org/10.1023/B:PLAN.0000007001.30865.0f
  5. Dougherty, M. K. and Morrison, D. K. (2004) Unlocking the code of 14-3-3. J. Cell Sci. 117, 1875-1884 https://doi.org/10.1242/jcs.01171
  6. Fu, H., Subramanian, R. R. and Masters, S. C. (2000) 14-3-3 proteins:structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol. 40, 617-647 https://doi.org/10.1146/annurev.pharmtox.40.1.617
  7. Gietz, R. D., Schiestl, R. H., Willems, A. R. and Woods, R. A. (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355-360 https://doi.org/10.1002/yea.320110408
  8. Holtman, W. L., Roberts, M. R. and Wang, M. (2000) 14-3-3 proteins and a 13-lipoxygenase form associations in a phosphorylationdependent manner. Biochem. Soc. Trans 28, 834-836 https://doi.org/10.1042/BST0280834
  9. Igarashi, D., Ishida, S., Fukazawa, J. and Takahashi, Y. (2001) 14-3-3 proteins regulate intracellular localization of the bZIP transcriptional activator RSG. Plant Cell 13, 2483-2497 https://doi.org/10.1105/tpc.13.11.2483
  10. Jahn, T., Fuglsang, A. T., Olsson, A., Bruntrup, I. M., Collinge, D. B., Volkmann, D., Sommarin, M., Palmgren, M. G. and Larsson, C. (1997) The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H(+)- ATPase. Plant Cell 9, 1805-1814 https://doi.org/10.1105/tpc.9.10.1805
  11. Kidou, S., Umeda, M., Kato, A. and Uchimiya, H. (1993) Isolation and characterization of a rice cDNA similar to the bovine brain-specific 14-3-3 protein gene. Plant Mol. Biol. 21, 191-194 https://doi.org/10.1007/BF00039631
  12. Lapointe, G., Luckevich, M. D., Cloutier, M. and Seguin, A. (2001) 14-3-3 gene family in hybrid poplar and its involvement in tree defence against pathogens. J. Exp. Bot. 52, 1331-1338 https://doi.org/10.1093/jexbot/52.359.1331
  13. Liu, D., Bienkowska, J., Petosa, C., Collier, R. J., Fu, H. and Liddington, R. (1995) Crystal structure of the zeta isoform of the 14-3-3 protein. Nature 376, 191-194 https://doi.org/10.1038/376191a0
  14. Lu, G., Paul, A. L., McCarty, D. R. and Ferl, R. J. (1996) Transcription factor veracity: is GBF3 responsible for ABA-regulated expression of Arabidopsis Adh? Plant Cell 8, 847-857 https://doi.org/10.1105/tpc.8.5.847
  15. Michelet, B. and Boutry, M. (1995) The plasma membrane $H^{+}$- ATPase (A highly regulated enzyme with multiple physiological functions). Plant Physiol. 108, 1-6 https://doi.org/10.1104/pp.108.1.1
  16. Muslin, A. J. and Xing, H. (2000) 14-3-3 proteins: regulation of subcellular localization by molecular interference. Cell Signal. 12, 703-709 https://doi.org/10.1016/S0898-6568(00)00131-5
  17. Qi, W., Liu, X., Qiao, D. and Martinez, J. D. (2005) Isoformspecific expression of 14-3-3 proteins in human lung cancer tissues. Int. J. Cancer 113, 359-363 https://doi.org/10.1002/ijc.20492
  18. Rosenquist, M., Alsterfjord, M., Larsson, C. and Sommarin, M. (2001) Data mining the Arabidopsis genome reveals fifteen 14- 3-3 genes. Expression is demonstrated for two out of five novel genes. Plant Physiol. 127, 142-149 https://doi.org/10.1104/pp.127.1.142
  19. Rosenquist, M., Sehnke, P., Ferl, R. J., Sommarin, M. and Larsson, C. (2000) Evolution of the 14-3-3 protein family: does the large number of isoforms in multicellular organisms reflect functional specificity? J. Mol. Evol. 51, 446-458 https://doi.org/10.1007/s002390010107
  20. Schultz, T. F., Medina, J., Hill, A. and Quatrano, R. S. (1998) 14-3-3 proteins are part of an abscisic acid-VIVIPAROUS1 (VP1) response complex in the Em promoter and interact with VP1 and EmBP1. Plant Cell 10, 837-847 https://doi.org/10.1105/tpc.10.5.837
  21. Sehnke, P. C., Rosenquist, M., Alsterfjord, M., DeLille, J., Sommarin, M., Larsson, C. and Ferl, R. J. (2002) Evolution and isoform specificity of plant 14-3-3 proteins. Plant Mol. Biol. 50, 1011-1018 https://doi.org/10.1023/A:1021289127519
  22. Shah, J. (2003) The salicylic acid loop in plant defense. Curr. Opin. Plant Biol. 6, 365-371 https://doi.org/10.1016/S1369-5266(03)00058-X
  23. Toroser, D., Athwal, G. S. and Huber, S. C. (1998) Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins. FEBS Lett 435, 110-114 https://doi.org/10.1016/S0014-5793(98)01048-5
  24. van Heusden, G. P., Griffiths, D. J., Ford, J. C., Chin, A. W. T. F., Schrader, P. A., Carr, A. M. and Steensma, H. Y. (1995) The 14-3-3 proteins encoded by the BMH1 and BMH2 genes are essential in the yeast Saccharomyces cerevisiae and can be replaced by a plant homologue. Eur. J. Biochem. 229, 45-53 https://doi.org/10.1111/j.1432-1033.1995.0045l.x
  25. van Heusden, G. P., van der Zanden, A. L., Ferl, R. J. and Steensma, H. Y. (1996) Four Arabidopsis thaliana 14-3-3 protein isoforms can complement the lethal yeast bmh1 bmh2 double disruption. FEBS Lett. 391, 252-256 https://doi.org/10.1016/0014-5793(96)00746-6
  26. Wang, W. and Shakes, D. C. (1996) Molecular evolution of the 14-3-3 protein family. J. Mol. Evol. 43, 384-398 https://doi.org/10.1007/BF02339012
  27. Wu, K., Rooney, M. F. and Ferl, R. J. (1997) The Arabidopsis 14-3-3 multigene family. Plant Physiol. 114, 1421-1431 https://doi.org/10.1104/pp.114.4.1421
  28. Zhang, H., Wang, J., Nickel, U., Allen, R. D. and Goodman, H. M. (1997) Cloning and expression of an Arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase. Plant Mol. Biol. 34, 967-971 https://doi.org/10.1023/A:1005814109732

Cited by

  1. Class-Specific Evolution and Transcriptional Differentiation of 14-3-3 Family Members in Mesohexaploid Brassica rapa vol.7, 2016, https://doi.org/10.3389/fpls.2016.00012
  2. 14-3-3 proteins in plant physiology vol.22, pp.7, 2011, https://doi.org/10.1016/j.semcdb.2011.08.006
  3. Genome-Wide Identification, Phylogeny, and Expression Analyses of the 14-3-3 Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana vol.7, 2016, https://doi.org/10.3389/fpls.2016.01442
  4. Molecular characterization and expression analysis of three homoeologous Ta14S genes encoding 14-3-3 proteins in wheat (Triticum aestivum L.) vol.4, pp.3, 2016, https://doi.org/10.1016/j.cj.2016.03.002
  5. Molecular characterization of a novel 14-3-3 protein gene (Hb14-3-3c) from Hevea brasiliensis vol.39, pp.4, 2012, https://doi.org/10.1007/s11033-011-1239-7
  6. Identification and characterization of the 14-3-3 gene family in Hevea brasiliensis vol.80, 2014, https://doi.org/10.1016/j.plaphy.2014.03.034
  7. Identification and expression analysis of four 14-3-3 genes during fruit ripening in banana (Musa acuminata L. AAA group, cv. Brazilian) vol.31, pp.2, 2012, https://doi.org/10.1007/s00299-011-1172-1
  8. Molecular Analysis and Expression Patterns of Four 14-3-3 Genes from Brassica napus L. vol.9, pp.7, 2010, https://doi.org/10.1016/S1671-2927(09)60175-9
  9. Transcriptome-wide identification and stress properties of the 14-3-3 gene family in cotton (Gossypium hirsutum L.) vol.11, pp.4, 2011, https://doi.org/10.1007/s10142-011-0242-3
  10. Plant receptor kinases bind and phosphorylate 14-3-3 proteins vol.38, pp.11, 2016, https://doi.org/10.1007/s13258-016-0468-5
  11. Interaction between ACC synthase 1 and 14-3-3 proteins in rice: a new insight vol.72, pp.9, 2007, https://doi.org/10.1134/S000629790709012X
  12. 14-3-3 Proteins in Plant-Pathogen Interactions vol.28, pp.5, 2015, https://doi.org/10.1094/MPMI-10-14-0322-CR
  13. Identification and Expression Analysis of the 14-3-3 Gene Family in the Mulberry Tree vol.33, pp.6, 2015, https://doi.org/10.1007/s11105-015-0877-7
  14. Arabidopsis 14-3-3 epsilon members contribute to polarity of PIN auxin carrier and auxin transport-related development vol.6, 2017, https://doi.org/10.7554/eLife.24336
  15. OsGF14bPositively Regulates Panicle Blast Resistance but Negatively Regulates Leaf Blast Resistance in Rice vol.29, pp.1, 2016, https://doi.org/10.1094/MPMI-03-15-0047-R
  16. 14-3-3 and FHA Domains Mediate Phosphoprotein Interactions vol.60, pp.1, 2009, https://doi.org/10.1146/annurev.arplant.59.032607.092844
  17. Proteomic analysis in the induction of nodular cluster cultures in the bromeliad Vriesea reitzii Leme and Costa vol.38, pp.5, 2016, https://doi.org/10.1007/s11738-016-2140-8
  18. 14-3-3 Proteins in Guard Cell Signaling vol.6, 2016, https://doi.org/10.3389/fpls.2015.01210
  19. 14-3-3 proteins regulate the intracellular localization of the transcriptional activator GmMYB176 and affect isoflavonoid synthesis in soybean vol.71, pp.2, 2012, https://doi.org/10.1111/j.1365-313X.2012.04986.x
  20. The Arabidopsis F-box protein AtFBS1 interacts with 14-3-3 proteins vol.195, 2012, https://doi.org/10.1016/j.plantsci.2012.06.009
  21. ABF transcription factors ofThellungiella salsuginea vol.8, pp.1, 2013, https://doi.org/10.4161/psb.22672
  22. Soybean 14-3-3 gene family: identification and molecular characterization vol.233, pp.3, 2011, https://doi.org/10.1007/s00425-010-1315-6
  23. Genome-wide identification and characterization of the 14–3-3 family in Vitis vinifera L. during berry development and cold- and heat-stress response vol.19, pp.1, 2018, https://doi.org/10.1186/s12864-018-4955-8
  24. Genome-Wide Analysis of the GRF Family Reveals Their Involvement in Abiotic Stress Response in Cassava vol.9, pp.2, 2018, https://doi.org/10.3390/genes9020110
  25. Overexpression of PvGF14c from Phyllostachys violascens Delays Flowering Time in Transgenic Arabidopsis vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00105
  26. Signaling Overview of Plant Somatic Embryogenesis vol.10, pp.1664-462X, 2019, https://doi.org/10.3389/fpls.2019.00077