DOI QR코드

DOI QR Code

Nucleotide Sequence, Structural Investigation and Homology Modeling Studies of a Ca2+-independent α-amylase with Acidic pH-profile

  • Sajedi, Reza Hassan (Department of Biochemistry and Biophysics, Faculty of Science, Tarbiat Modares University) ;
  • Taghdir, Majid (Department of Biochemistry and Biophysics, Faculty of Science, Tarbiat Modares University) ;
  • Naderi-Manesh, Hossein (Department of Biochemistry and Biophysics, Faculty of Science, Tarbiat Modares University) ;
  • Khajeh, Khosro (Department of Biochemistry and Biophysics, Faculty of Science, Tarbiat Modares University) ;
  • Ranjbar, Bijan (Department of Biochemistry and Biophysics, Faculty of Science, Tarbiat Modares University)
  • Published : 2007.05.31

Abstract

The novel $\alpha$-amylase purified from locally isolated strain, Bacillus sp. KR-8104, (KRA) (Enzyme Microb Technol; 2005; 36: 666-671) is active in a wide range of pH. The enzyme maximum activity is at pH 4.0 and it retains 90% of activity at pH 3.5. The irreversible thermoinactivation patterns of KRA and the enzyme activity are not changed in the presence and absence of $Ca^{2+}$ and EDTA. Therefore, KRA acts as a $Ca^{2+}$-independent enzyme. Based on circular dichroism (CD) data from thermal unfolding of the enzyme recorded at 222 nm, addition of $Ca^{2+}$ and EDTA similar to its irreversible thermoinactivation, does not influence the thermal denaturation of the enzyme and its Tm. The amino acid sequence of KRA was obtained from the nucleotide sequencing of PCR products of encoding gene. The deduced amino acid sequence of the enzyme revealed a very high sequence homology to Bacillus amyloliquefaciens (BAA) (85% identity, 90% similarity) and Bacillus licheniformis $\alpha$-amylases (BLA) (81% identity, 88% similarity). To elucidate and understand these characteristics of the $\alpha$-amylase, a model of 3D structure of KRA was constructed using the crystal structure of the mutant of BLA as the platform and refined with a molecular dynamics (MD) simulation program. Interestingly enough, there is only one amino acid substitution for KRA in comparison with BLA and BAA in the region involved in the calcium-binding sites. On the other hand, there are many amino acid differences between BLA and KRA at the interface of A and B domains and around the metal triad and active site area. These alterations could have a role in stabilizing the native structure of the loop in the active site cleft and maintenance and stabilization of the putative metal triad-binding site. The amino acid differences at the active site cleft and around the catalytic residues might affect their pKa values and consequently shift its pH profile. In addition, the intrinsic fluorescence intensity of the enzyme at 350 nm does not show considerable change at pH 3.5-7.0.

Keywords

References

  1. Aghajari, N., Feller, G., Gerday, C. and Haser, R. (1998) Crystal structures of the psychrophilic $\alpha$-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor. Protein Sci. 7, 564-572 https://doi.org/10.1002/pro.5560070304
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  3. Asghari, S. M., Khajeh, K., Moradian, F., Ranjbar, B. and Naderi-Manesh, H. (2004) Acid-induced conformational changes in Bacillus amyloliquefaciens $\alpha$-amylase: appearance of a molten globule like state. Enzyme Microb. Technol. 35, 51-57 https://doi.org/10.1016/j.enzmictec.2004.03.006
  4. Bairoch, A. and Apweiler, R. (1999) The Swiss-Prot protein sequence data bank and its supplement TrEMBL in 1999. Nucleic Acids Res. 27, 49-54 https://doi.org/10.1093/nar/27.1.49
  5. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., Rapp, B. A. and Wheeler, D. L. (2004) GenBank. Nucleic Acids Res. 32, 23-26
  6. Bernfeld, P. (1955) Amylase, $\alpha$ and $\beta$. Methods Enzymol. 1, 149-151 https://doi.org/10.1016/0076-6879(55)01021-5
  7. Bessler, C., Schmitt, J., Maurer, K. H. and Schmid R. D. (2003) Directed evolution of a bacterial alpha-amylase: toward enhanced pH-performance and higher specific activity. Protein Sci. 12, 2141-2149 https://doi.org/10.1110/ps.0384403
  8. Boel, E., Brady, L., Brzozowski, A. M., Derewenda, Z., Dodson, G. G., Jensen, V. J., Petersen, S. B., Swift, H., Thim, L. and Woldike, H. F. (1990) Calcium binding in $\alpha$-amylases: an X-ray diffraction study at 2.1$\AA$ resolution of two enzymes from Aspergillus. Biochemistry 29, 6244-6249 https://doi.org/10.1021/bi00478a019
  9. Bradford, M. M. (1976) A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of proteindye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  10. Brzozowski, A. M., Lawson, D. M., Turkenburg, J. P., Bisgaard-Frantzen, H., Svendsen, A., Borchert, T. V., Dauter, Z., Wilson, K. S. and Davies, G. J. (2000) Structural analysis of a chimeric bacterial $\alpha$-amylase, High-resolution analysis of native and ligand complexes. Biochemistry 39, 9099-9107 https://doi.org/10.1021/bi0000317
  11. Case, D. A., Darden, T. A., Cheatham III, T. E., Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Merz, K. M., Wang, B., Pearlman, D. A., Crowley, M., Brozell, S., Tsui, V., Gohlke, H., Mongan, J., Hornak, V., Cui, G., Beroza, P., Schafmeister, C., Caldwell, J. W., Ross, W. S. and Kollman, P. A. (2004) AMBER 8, University of California, San Francisco, USA
  12. Declerck, N., Machius, M., Joyet, P., Wiegand, G., Huber, R. and Gaillardin, C. (2002) Engineering the thermostability of Bacillus licheniformis $\alpha$-amylase. Biologia, Bratislava. 57 (Suppl. 11), 203-211
  13. Dong, G., Vieille, C., Savchenko, A., Zeikus, J. G., (1997) Cloning, sequencing, and expression of the gene encoding extracellular $\alpha$- amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl. Environ. Microbiol. 63, 3569-3576
  14. Fitter, J. and Haber-Pohlmeier, S. (2004) Structural stability and unfolding properties of thermostable bacterial $\alpha$-amylases: a comparative study of homologous enzymes. Biochemistry 43, 9589-9599 https://doi.org/10.1021/bi0493362
  15. Fujimoto, Z., Takase, K., Doui, N., Momma, M., Matsumoto, T. and Mizuno, H. (1998) Crystal structure of a catalytic-site mutant $\alpha$- amylase from Bacillus subtilis complexed with maltopentaose. J. Mol. Biol. 277, 393-407 https://doi.org/10.1006/jmbi.1997.1599
  16. Gouet, P., Courcelle, E., Stuart, D. I. and Metoz, F. (1999) ESPript:analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305-308 https://doi.org/10.1093/bioinformatics/15.4.305
  17. Guex, N. and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714-2723 https://doi.org/10.1002/elps.1150181505
  18. Hagihara, H., Hayashi, Y., Endo, K., Igarashi, K., Ozawa, T., Kawai, S., Ozaki, K. and Ito, S. (2001) Deduced amino-acid sequence of a calcium-free $\alpha$-amylase from a strain of Bacillus. Eur. J. Biochem. 268, 3974-3982 https://doi.org/10.1046/j.1432-1327.2001.02308.x
  19. Hashida, M. and Bisgaard-Frantzen, H. (2000) Protein engineering of new industrial amylases. Trends Glycosci. Glycotechnol. 68, 389-401
  20. Horikoshi, K. (1995) Discovering novel bacteria, with an eye to biotechnological applications. Curr. Opin. Biotechnol. 6, 292-297 https://doi.org/10.1016/0958-1669(95)80050-6
  21. Igarashi, K., Hatada, Y., Hagihara, H., Saeki, K., Takaiwa, M., Uemura, T., Ara, K., Ozaki, K., Kawai, S., Kobayashi, T. and Ito, S. (1998) Enzymatic properties of a novel liquefying $\alpha$- amylase from an alkaliphilic Bacillus isolate and entire nucleotide and amino acid sequences. Appl. Environ. Microbiol. 64, 3282-3289
  22. Kadziola, A., Abe, J., Svensson, B. and Haser, R. (1994) Crystal and molecular structure of barley $\alpha$-amylase. J. Mol. Biol. 239, 104-121 https://doi.org/10.1006/jmbi.1994.1354
  23. Khajeh, K., Ranjbar, B., Naderi-Manesh, H., Ebrahim Habibi, A. and Nemat-Gorgani, M. (2001) Chemical modification of bacterial $\alpha$-amylases: changes in tertiary structures and the effect of additional calcium. Biochim. Biophys. Acta. 1548, 229-237 https://doi.org/10.1016/S0167-4838(01)00236-9
  24. Koradi, R., Billeter, M. and Wuthrich, K. (1996) MOLMOL: A program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51-55 https://doi.org/10.1016/0263-7855(96)00009-4
  25. Laderman, K. A., Davis, B. R., Krutzsch, H. C., Lewis, M. S., Griko, Y. V., Privalov, P. L. and Anfinsen, C. B. (1993) The purification and characterization of an extremely thermostable $\alpha$-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J. Biol. Chem. 268, 24394-24401
  26. Li, H., Robertson, A. D. and Jensen, J. H. (2004) The determinants of carboxyl pKa values in turkey ovomucoid third domain. Proteins 55, 689-704 https://doi.org/10.1002/prot.20032
  27. Linden, A., Mayans, O., Meyer-Klaucke, W., Antranikian, G. and Wilmanns, M. (2003) Differential regulation of a hyperthermophilic $\alpha$-amylase with a novel (Ca,Zn) two-metal center by zinc. J. Biol. Chem. 278, 9875-9884 https://doi.org/10.1074/jbc.M211339200
  28. Machius, M., Declerck, N., Huber, R. and Wiegand, G. (1998) Activation of Bacillus licheniformis $\alpha$-amylase through a disorderorder transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure 6, 281-292 https://doi.org/10.1016/S0969-2126(98)00032-X
  29. Machius, M., Wiegand, G. and Huber, R. (1995) Crystal structure of calcium-depleted Bacillus licheniformis $\alpha$-amylase at 2.2$\AA$ resolution. J. Mol. Biol. 246, 545-559 https://doi.org/10.1006/jmbi.1994.0106
  30. Marti-Renom, M. A., Stuart, A., Fiser, A., Sanchez, R., Melo, F. and Sali, A. (2000) Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291-325 https://doi.org/10.1146/annurev.biophys.29.1.291
  31. Matsuura, Y. A. (2002) Possible mechanism of catalysis involving three essential residues in the enzymes of alpha-amylase family. Biologia, Bratislava. 57 (Suppl. 11), 21-27
  32. McCarter, J. D. and Withers, S. G. (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr. Opin. Struct. Biol. 4, 885-892 https://doi.org/10.1016/0959-440X(94)90271-2
  33. Nakajima, R., Imanaka, T. and Aiba S. (1986) Comparison of amino acid sequences of eleven different $\alpha$-amylases Appl. Microbiol. Biotechnol. 23, 355-360
  34. Nielsen, J. E., Beier, L., Otzen, D., Borchert, T. V., Frantzen, H. B., Andersen, K. V. and Svendsen A. (1999) Electrostatics in the active site of an alpha-amylase. Eur. J. Biochem. 264, 816-824 https://doi.org/10.1046/j.1432-1327.1999.00664.x
  35. Nielsen, J. E. and Borchert, T. V. (2000) Protein engineering of bacterial $\alpha$-amylases. Biochim. Biophys. Acta 1543, 253-274 https://doi.org/10.1016/S0167-4838(00)00240-5
  36. Nielsen, J. E., Borchert, T. V. and Vriend, G. (2001) The determinants of alpha-amylase pH-activity profiles. Protein Eng. 14, 505-512 https://doi.org/10.1093/protein/14.7.505
  37. Nielsen, A. D., Pusey, M. L., Fuglsang, C. C. and Westh, P. A. (2003) Proposed mechanism for the thermal denaturation of a recombinant Bacillus halmapalus $\alpha$-amylase the effect of calcium ions. Biochim. Biophys. Acta 1652, 52-63 https://doi.org/10.1016/j.bbapap.2003.08.002
  38. Nonaka, T., Fujihashi, M., Kita, A., Hagihara, H., Ozaki, K., Ito, S. and Miki, K. (2003) Crystal structure of calcium-free $\alpha$-amylase from Bacillus sp. strain KSM-K38 (AmyK38) and its sodium ion binding sites. J. Biol. Chem. 278, 24818-24824 https://doi.org/10.1074/jbc.M212763200
  39. Northrup, S. H. (1995) MacroDox v.2.0.2: Software for the Prediction of Macromolecular Interaction. Tennessee Technological University, Cookeville, TN
  40. Pandey, A., Nigam, P., Soccol, C. R., Soccol, V. T., Singh, D. and Mohan, R. (2000) Advances in microbial amylases. Biotechnol. Appl. Biochem. 31, 135-152 https://doi.org/10.1042/BA19990073
  41. Qian, M., Haser, R., Buisson, G., Duee, E. and Payan, F. (1994) The active center of a mammalian $\alpha$-amylase. Structure of the complex of a pancreatic $\alpha$-amylase with a carbohydrate inhibitor refined to 2.2 $\AA$ resolution. Biochemistry 33, 6284-6294 https://doi.org/10.1021/bi00186a031
  42. Sajedi, R. H., Naderi-Manesh, H., Khajeh, K., Ahmadvand, R., Ranjbar, B., Asoodeh, A. and Moradian, F. (2005) A Ca-independent $\alpha$-amylase that is active and stable at low pH from the Bacillus sp. KR-8104. Enzyme Microb. Technol. 36, 666-671 https://doi.org/10.1016/j.enzmictec.2004.11.003
  43. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press, New York, USA
  44. Sanger, F., Nicklen, S. and Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463-5467 https://doi.org/10.1073/pnas.74.12.5463
  45. Schippers, P. H. and Dekkers H. P. J. M. (1981) Direct determination of absolute circular dichroism data and calibration of commertial instrument. Anal. Chem. 53, 778-788 https://doi.org/10.1021/ac00229a008
  46. Strobl, S., Maskos, K., Betz, M., Wiegand, G., Huber, R., Gomis-Ruth, F. X. and Glockshuber, R. (1998) Crystal structure of yellow meal worm $\alpha$-amylase at 1.64 $\AA$ resolution. J. Mol. Biol. 278, 617-628 https://doi.org/10.1006/jmbi.1998.1667
  47. Suvd, D., Fujimoto, Z., Takase, K., Matsumura, M. and Mizuno, H. (2001) Crystal structure of Bacillus stearothermophilus $\alpha$- amylase: possible factors determining the thermostability. J. Biochem. (Tokyo) 129, 461-468 https://doi.org/10.1093/oxfordjournals.jbchem.a002878
  48. Suzuki, Y., Ito, N., Yuuki, T., Yamagata, H. and Udaka, S. (1989) Amino acid residues stabilizing a Bacillus $\alpha$-amylase against irreversible thermodenaturation. J. Biol. Chem. 264, 18933-18938
  49. Swift, H. J., Brady, L., Derewanda, Z. S., Dodson, E. J., Dodson, G. G., Turkenburg, J. P. and Wilkinson, A. J. (1991) Structure and molecular model refinement of Aspergillus oryzae (TAKA) $\alpha$-amylase: an application of the simulated-annealing method. Acta Crystallogr. D. 47, 535-544 https://doi.org/10.1107/S0108768191001970
  50. Takakuwa, T., Konno, T. and Meguro, H. (1985) A new standard substance for calibration of circular dichroism: Ammonium d-10-camphorsulfonate. Anal. Sci. 1, 215-225 https://doi.org/10.2116/analsci.1.215
  51. Tanaka, A. and Hoshino, E. (2002) Calcium-binding parameter of Bacillus amyloliquefaciens $\alpha$-amylase determined by inactivation kinetics. Biochem. J. 364, 635-639 https://doi.org/10.1042/BJ20011436
  52. Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  53. Tomazic, S. J. and Klibanov, A. M. (1988) Mechanisms of irreversible thermal inactivation of Bacillus alpha-amylases. J. Biol. Chem. 263, 3086-3091
  54. Vallee, B. L., Stein, E. A., Sumerwell, W. N. and Fischer, E. H. (1959) Metal content of $\alpha$-amylases of various origins. J. Biol. Chem. 234, 2901-2905
  55. Van der Maarel, M. J., van der Veen, B., Uitdehaag, J. C., Leemhuis, H. and Dijkhuizen, L. (2002) Properties and applications of starch-converting enzymes of the $\alpha$-amylase family. J. Biotechnol. 94, 137-155 https://doi.org/10.1016/S0168-1656(01)00407-2
  56. Violet, M. and Meunier, J. C. (1989) Kinetic studies of the irreversible thermal inactivation of Bacillus licheniformis $\alpha$- amylase. Biochem. J. 263, 665-670 https://doi.org/10.1042/bj2630665

Cited by

  1. Evidence regarding the hypothesis that the histidine–histidine contact pairs may affect protein stability vol.50, pp.4, 2012, https://doi.org/10.1016/j.ijbiomac.2011.12.009
  2. Microbial acid-stable α-amylases: Characteristics, genetic engineering and applications vol.48, pp.2, 2013, https://doi.org/10.1016/j.procbio.2012.12.018
  3. Structural and biochemical features of acidic α-amylase of Bacillus acidicola vol.61, 2013, https://doi.org/10.1016/j.ijbiomac.2013.08.003
  4. An analysis of temperature adaptation in cold active, mesophilic and thermophilic Bacillus α-amylases vol.49, pp.5, 2011, https://doi.org/10.1016/j.ijbiomac.2011.08.030
  5. Circular Dichroism Techniques: Biomolecular and Nanostructural Analyses- A Review vol.74, pp.2, 2009, https://doi.org/10.1111/j.1747-0285.2009.00847.x
  6. Cloning, heterologous expression, and comparative characterization of a mesophilic α-amylase gene from Bacillus subtilis JN16 in Escherichia coli vol.62, pp.3, 2012, https://doi.org/10.1007/s13213-011-0364-9
  7. Mutations in Cyclodextrin Glycosyltransferase fromBacillus circulansEnhance β-Cyclization Activity and β-Cyclodextrin Production vol.62, pp.46, 2014, https://doi.org/10.1021/jf503523z
  8. Atypical Ca2+-independent, raw-starch hydrolysing α-amylase from Bacillus sp. GRE1: characterization and gene isolation vol.24, pp.11, 2008, https://doi.org/10.1007/s11274-008-9775-6