DOI QR코드

DOI QR Code

AtMAP65-1 Binds to Tubulin Dimers to Promote Tubulin Assembly

  • Li, Hua (State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University) ;
  • Yuan, Ming (State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University) ;
  • Mao, Tonglin (State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University)
  • Published : 2007.03.31

Abstract

In Arabidopsis thaliana, the microtubule-associated protein AtMAP65-1 shows various functions on microtubule dynamics and organizations. However, it is still an open question about whether AtMAP65-1 binds to tubulin dimers and how it regulates microtubule dynamics. In present study, the tubulin-binding activity of AtMAP65-1 was investigated. Pull-down and co-sedimentation exp eriments demonstrated that AtMAP65-1 bound to tubulin dimers,at a molar ratio of 1 : 1. Cross-linking experiments showed that AtMAP65-1 bound to tubulin dimers by interacting with $\alpha$-tubulin of the tubulin heterodimer. Interfering the bundling effect of AtMAP65-1 by addition of salt and monitoring the tubulin assembly, the experiment results indicated that AtMAP65-1 promoted tubulin assembly by interacting with tubulin dimers. In addition, five truncated versions of AtMAP65-1, namely AtMAP65-1 $\Delta$N339 (amino acids 340-587); AtMAP65-1 $\Delta$N494 (amino acids 495-587); AtMAP65-1 340-494 (amino acids 340-494); AtMAP65-1 $\Delta$C495 (amino acids 1-494) and AtMAP65-1 $\Delta$C340 (amino acids 1-339), were tested for their binding activities and roles in tubulin polymerization in vitro. Four (AtMAP65-1 $\Delta$N339, $\Delta$N494, AtMAP65-1 340-494 and $\Delta$C495) from the five truncated proteins were able to co-sediment with microtubules, and three (AtMAP65-1 $\Delta$N339, $\Delta$N494 and AtMAP65-1 340-494) of them could bind to tubulin dimers in vitro. Among the three truncated proteins, AtMAP65-1 $\Delta$N339 showed the greatest activity to promote tubulin polymerization, AtMAP65-1 $\Delta$N494 exhibited almost the same activity as the full length protein in promoting tubulin assembly, and AtMAP65-1 340-494 had minor activity to promote tubulin assembly. On the contrast, AtMAP65-1 $\Delta$C495, which bound to microtubules but not to tubulin dimers, did not affect tubulin assembly. Our study suggested that AtMAP65-1 might promote tubulin assembly by binding to tubulin dimers in vivo.

Keywords

References

  1. Arnal, I., Heichette, C., Diamantopoulos, G. S. and Chrètien, D. (2004) CLIP-170/tubulin-curved oligomers coassemble at microtubule ends and promote rescues. Curr. Biol. 14, 2086-2095. https://doi.org/10.1016/j.cub.2004.11.055
  2. Cassimeris, L., Gard, D., Tran, P. T. and Erickson, H. P. (2001) XMAP215 is a long thin molecule that does not increase microtubule stiffness. J. Cell Sci. 114, 3025-3033.
  3. Chan, J., Rutten, T. and Lloyd, C. (1996) Isolation of microtubuleassociated proteins from carrot cytoskeletons: a 120 kDa map decorates all four microtubule arrays and the nucleus. Plant J. 10, 251-259. https://doi.org/10.1046/j.1365-313X.1996.10020251.x
  4. Chang, H. -Y., Smertenko, A. P., Igarashi, H., Dixon, D. P. and Hussey, P. J. (2005) Dynamic interaction of NtMAP65-1a with microtubules in vivo. J. Cell Sci. 118, 3195-3201. https://doi.org/10.1242/jcs.02433
  5. Chang-Jie, J. and Sonobe, S. (1993) Identification and preliminary characterization of a 65 kDa higher-plant microtubuleassociated protein. J. Cell Sci. 105, 891-901.
  6. Chuong, S. D., Good, A. G., Taylor, G. J., Freeman, M. C., Moorhead, G. B. and Muench, D. G. (2004) Large-scale identification of tubulin-binding proteins provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells. Mol. Cell. Proteomics 3, 970-983. https://doi.org/10.1074/mcp.M400053-MCP200
  7. Fukata, Y., Itoh, T. J., Kimura, T., Ménager, C., Nishimura, T., Shiromizu, T., Watanabe, H., Inagaki, N., Iwamatsu, A., Hotani, H. and Kaibuchi, K. (2002) CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat. Cell Biol.4, 583-591. https://doi.org/10.1038/ncb825
  8. Gachea, V., Louwagieb, M., Garinb, J., Caudrona, N., Lafanecherea, L. and Valirona, Odile. (2005) Identification of proteins binding the native tubulin dimer. Biochem. Biophys. Res. Commun. 327, 35-42. https://doi.org/10.1016/j.bbrc.2004.11.138
  9. Hamada,T., Igarashi, H., Itoh, T. J., Shimmen, T. and Sonobe, S. (2004) Characterization of a 200 kDa microtubule-associated protein of tobacco BY-2 cells, a member of the XMAP215/ MOR1 family. Plant Cell Physiol. 45, 1233-1242. https://doi.org/10.1093/pcp/pch145
  10. Hussey, P. J., Hawkins, T. J., Igarashi, H., Kaloriti, D. and Smertenko A. (2002) The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol. Biol. 50, 915-924. https://doi.org/10.1023/A:1021236307508
  11. Jourdain, L., Curmi, P., Sobel, A., Pantaloni, D. and Carlier, M. -F. (1997) Stathmin: A tubulin-sequestering protein which forms a ternary T2S complex with two tubulin molecules. Biochemistry 36, 10817-10821. https://doi.org/10.1021/bi971491b
  12. Mao, T. L., Jin, L. F., Li, H., Liu, B. and Yuan, M. (2005) Two Microtubule-Associated Proteins of the Arabidopsis MAP65 Family Function Differently on Microtubules. Plant Physiol. 138, 654-662. https://doi.org/10.1104/pp.104.052456
  13. Patel, N., Thierry-Miegt, D. and Mancillas, J. (1993) Cloning by insertional mutagenesis of a cDNA encoding Caenorhabditis elegans kinesin heavy chain. Proc. Natl. Acad. Sci. USA 90, 9181-9185.
  14. Smertenko, A. P., Saleh, N., Igarashi, H., Mori, H., Hauser-Hahn, I., Jiang, C. J. Sonobe, S., Lloyd, C. W. and Hussey, P. J. (2000) A new class of microtubule-associated proteins in plants. Nat. Cell Biol. 2, 750-753. https://doi.org/10.1038/35036390
  15. Smertenko, A. P., Chang, H. -Yu, Wagner, V., Kaloriti, D., Fenyk, S., Sonobe, S., Lloyd, C., Hauser, M. T. and Hussey, P. J. (2004) The arabidopsis microtubule-associated protein AtMAP65-1: Molecular analysis of its microtubule bundling activity. Plant Cell 16, 2035-2047. https://doi.org/10.1105/tpc.104.023937
  16. Spittle, C., Charrasse, S., Larroque, C. and Cassimeris, L. (2000) The interaction of TOGp with microtubules and tubulin. J. Biol. Chem. 275, 20748-20753. https://doi.org/10.1074/jbc.M002597200
  17. Taylor, K. R., Holzer, A. K., Bazan, J. F., Walsh, C. A. and Gleeson, J. G. (2000) Patient mutations in doublecortin define a repeated tubulin-binding domain. J. Biol. Chem. 44, 34442-34450.
  18. Wicker-Planquart, C., Stoppin-Mellet, V., Blanchoin, L. and Vantard, M. (2004) Interactions of tobacco microtubuleassociated protein MAP65-1b with microtubules. Plant J. 39, 126-134. https://doi.org/10.1111/j.1365-313X.2004.02115.x

Cited by

  1. Characterization of β-tubulin 4 regulated by gibberellins in rice leaf sheath vol.53, pp.3, 2009, https://doi.org/10.1007/s10535-009-0081-4
  2. MAP65 in tubulin/colchicine paracrystals ofVigna sinensisroot cells: Possible role in the assembly and stabilization of atypical tubulin polymers 2010, https://doi.org/10.1002/cm.20432
  3. Salt Tolerance Requires Cortical Microtubule Reorganization in Arabidopsis vol.48, pp.11, 2007, https://doi.org/10.1093/pcp/pcm123
  4. The cloning and expression of α-tubulin inMonochamus alternatus vol.17, pp.5, 2008, https://doi.org/10.1111/j.1365-2583.2008.00818.x
  5. Tobacco microtubule-associated protein, MAP65-1c, bundles and stabilizes microtubules vol.74, pp.6, 2010, https://doi.org/10.1007/s11103-010-9694-4
  6. The parallel lives of microtubules and cellulose microfibrils vol.11, pp.6, 2008, https://doi.org/10.1016/j.pbi.2008.10.007
  7. Straighten up and fly right—microtubule dynamics and organization of non-centrosomal arrays in higher plants vol.20, pp.1, 2008, https://doi.org/10.1016/j.ceb.2007.12.004
  8. Microtubules and mitogen-activated protein kinase signalling vol.14, pp.6, 2011, https://doi.org/10.1016/j.pbi.2011.07.008