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We address a disposal issue of returned products in a product recovery system where a single product is stocked 
in order to meet a demand from customers who may return products after usage. Product returns occur randomly 
and can be accepted for remanufacturing or disposed of depending on the state of the system. We examine the 
structure of the optimal disposal policy for returned product that utilizes the information of the inventory of both 
serviceable and remanufacturable products. Numerical study indicates that it can be characterized by a 
monotonic threshold type of the curve. A disposal is allowed only when the remanufacturable inventory level 
exceeds a threshold which is the function of the inventory level of serviceable product and it is decreasing as the 
serviceable inventory level increases. Sensitivity analysis also indicates that the optimal disposal policy and the 
optimal profit have monotonic properties with respect to system parameters.
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1. Introduction

There has been considerable interest in inventory 
control for joint manufacturing and remanufacturing 
systems, since remanufacturing is less costly than 
producing originally new product, recovery of used 
products may prove beneficial due to savings in 
material and manufacturing costs. It differs from 
traditional inventory management situations in es-
sentially two aspects. First, product returns repre-
sent an exogenous inbound material flow causing a 
loss of monotonicity of stock levels of serviceable 
products which serve customer demands. Second, 

two alternative supply sources are available for re-
plenishing the serviceable inventory. One source is 
to procure externally or produce internally while 
the other comes from remanufacturing activity. 
While both aspects as such are not new to in-
ventory theory it is their combination that leads to 
novel situations.

In this paper, we address a problem of product 
recovery management where a single product is 
stocked in order to meet a demand from customers 
who may return products after usage. Demands oc-
cur randomly and each demand satisfied from 
on-hand inventory of serviceable product generates 
a revenue. If on-hand serviceable inventory is not 
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available, arriving demands are lost. Product returns 
occur randomly and each of returned product can 
be accepted for remanufacturing or disposed of de-
pending on the state of the system. It makes sense 
to consider the possibility to dispose of returned 
product into the model, since an increase in the re-
covery of used products may not result in higher 
profits for the firm. The reduction in the profits is 
due to increasing inventory costs of both manufac-
turable and remanufacturable products. If accepted 
returns undergo a remanufacturing process, they are 
assumed to be as good as new after recovering. 
Besides remanufacturing, new products are pro-
duced by a manufacturing facility on the continuous 
production basis. Serviceable products obtained 
from both manufacturing and remanufacturing proc-
esses are held in inventory to meet customer 
demands. The primary goal of this paper is to ex-
amine an optimal disposal policy for product return. 
To this end, we provide a simple model, discussed 
in the next section, to gain insights into the nature 
of these problem.

Detailed literature surveys for product recovery 
models are found in Fleischmann et al. (1997), 
Mahadevan et al. (2003), and Savaskan et al. (2004). 
Product recovery models with disposal options un-
der periodic inventory review are found in Simpson 
(1978), Inderfurth (1997), Teunter and Vlachos (2002). 
Simpson (2004) considers the tradeoff between ma-
terial savings due to reuse of old products versus 
additional inventory carrying costs and shows opti-
mality of a three parameter policy to control re-
plenishment order, recovery, and disposal when 
neither fixed costs nor lead times are considered. 
Inderfurth (1997) considers the effects of fixed and 
deterministic lead times for replenishment order 
and recovery without fixed costs. For identical lead 
times, he shows that the structure of the optimal 
policy is the same as Simpson (2004). Inderfurth 
(1997) also considers the case of recovery not al-
lowing storage of recoverable products. For identi-
cal lead times, a two parameter order upto and dis-
pose down to policy is shown to be optimal. 
Teunter and Vlachos (2002) consider a single item 
production system with manufacturing and reman-
ufacturing and deal with the issue of what the cost 
reduction associated with having a disposal option 
for returned item is. Using simulation, they show 
that there is only a considerable cost reduction if 

an item is very slow moving, the recovery rate is 
high, and remanufacturing is almost as expensive 
as manufacturing.

A parallel stream of research has evolved for con-
tinuous inventory review models. Heyman (1997) 
studies disposal policies for a model where demands 
and returns are independent stochastic process, re-
manufacturing and procurement are instantaneous, 
and no fixed costs of remanufacturing and procure-
ment are taken into account. When demands and 
returns follow Poisson process, he shows the opti-
mality of single parameter disposal policy and de-
rives an explicit expression for the optimal disposal 
level. Van der Lann et al. (1996a) present an ex-
plicit modeling of non-zero remanufacturing process 
with a disposal option under which the number of 
remanufacturable products is limited to a certain 
maximum level. Van der Lann et al. (1996b) pres-
ent a numerical comparison of several disposal pol-
icies and show that it is advantageous to base dis-
posal decisions on both the inventory level of re-
manufacturable products and an adequately defined 
total inventory.

Our model differs from previous product recov-
ery models with a disposal option in the following 
aspect. First, we examine the optimal disposal poli-
cy which reflects both probabilistic lead times for 
manufacturing and remanufacturing and unit costs 
of manufacturing and remanufacturing. Second, our 
disposal policy is based upon future demand and 
product return processes and serviceable and re-
manufacturable inventory processes. In contrast, pre-
vious research papers present static single parame-
ter disposal policies based on the remanufacturable 
inventory level only or the (possibly weighted) sum 
of both inventory levels. It is the most distinct fea-
ture that a disposal decision in this paper is dy-
namically made according to the function of both 
serviceable and remanufacturable inventory levels. 

The paper is organized as follows. In the next 
section, we provide a formulation of our model. 
The structure of the optimal disposal policy is stu-
died in section 3. Section 4 presents a numerical 
example which graphically illustrates the optimal 
policy. In section 5, we numerically implement a 
sensitivity analysis of the optimal policy with re-
spect to system parameters. Finally we state our 
conclusions in the last section.
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2.  Problem Formulation

When a demand for product arises, it is satisfied 
immediately from on-hand inventory of serviceable 
products. If they are not available, the demand is 
lost. Demands for product occur randomly with 
rate   and the sales price of a product is . The 
production time for a new product is a random 
variable with mean 

   and the unit cost of man-
ufacturing a new product is  . Product returns 
occur randomly with rate   and each returned 
product can be disposed of or accepted for rema-
nufacturing. The time required for remanufacturing 
a returned product into a new one is a random 
variable with mean 

   and the unit cost of re-
manufacturing is . We further assume that the 
unit cost of remanufacturing is the same for all re-
manufactured products and the quality of originally 
new product and remanufactured one are the same. 
This assumption is usually made in most of prod-
uct recovery models. Holding costs are assessed at 
rate   and   for each product in serviceable in-
ventory and each returned product in remanufactur-
able inventory, respectively. Disposal of a returned 
product accrues a positive salvage value of   (the 
model can be converted to the case that a disposal 
costs).

Let   and   respectively represent the 
number of products in serviceable inventory and 
the number of returned products in remanufactur-
able inventory at time . Then, a state is described 
by the vector     and the state space is 
denoted by 



. At each epoch of a product re-
turn, the firm can take one of the following two 
actions: Admit a returned product for remanu-
facturing or Dispose of it. A control policy,  , 
specifies the action taken at any epoch of a prod-
uct return given the current state of the system. 
Denote the initial state by    and the interest 
rate by  . Then, the expected discounted profit 
given    over an infinite horizon under   
can be written as

     








∞

   


 
∈


 
∈
  

∈
  

∈
   (1)

where  ,  ,  , and   respectively denote the 
set of random instances of demand satisfaction, 
disposal of returned product, new product manu-
facturing completion, and remanufacturing com-
pletion under policy  . Then, the goal of this pa-
per is to find the disposal policy which maximize 
the following expected discounted profit over an 
infinite horizon :

                 (2)

where sup implies the supreme.

3.  Structure of the Optimal Policy

In this section, we investigate the structure of an 
optimal disposal policy. Since it is not possible to 
identify the optimal disposal policy under general 
probability distribution, we assume that demand 
and product return follow a Poisson process and 
manufacturing and remanufacturing processes fol-
low an exponential distribution.

Denote          if   ; 
  otherwise, and           if 
  ;    otherwise. Operator   and  re-
spectively correspond to a demand arrival and a re-
manufacturing completion. From the theory of Mar-
kov decision processes(see chapter 6 in Puterman, 
2005), we know that the optimal profit function 
   in (2) satisfies the following optimality 
equation:

    

 
 



     (3)

         

      

        

where          ,    , and 
    if  is true, otherwise, 0.

Since  is the sum of all transition rates,  in 
(3) is the expected transition time.   can be in-
terpreted as the discount factor for this discrete- 
time Markov decision process. The terms multipli-
ed by   represent sales revenues and transitions 
generated with the arrival of demand, the terms 
multiplied by   and   imply penalties and tran-
sitions associated with a production completion of 
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a new product and a remanufacturing completion, 
respectively, and the terms multiplied by   repre-
sent transitions and disposal revenues generated 
with the arrival of a product return.

Define the value iteration operator   on  by

    

 
 



     (4)

         
      

        

Then, (3) can be rewritten as (see Equation (6.2.8) 
in Puterman (2005))

                . (5)

Next, consider the following value iteration algo-
rithm (see Bertsekas (1987) for the detail) to solve 
for equation(5) :

              … (6)

where     for every state   . Here 
     can be viewed as the optimal profit 
in state    when the problem is terminated 
after  iterations. Since   is a contraction map-
ping, it is well known that      converges 
to    as  goes to the infinite.

Define             and 
          . The quan-
tity    and    respectively im-
ply the marginal profit obtained when there is one 
more unit of product in serviceable inventory and 
one more unit of product in remanufacurable in-
ventory.

Numerical investigation indicates that the optimal 
profit function  has the following set of the prop-
erties:

(i) Submodularity:
  ≥    and 
  ≥     

(ii) -Diagonal dominance:
   ≥       and 
    ≥   

(iii) Concavity:
  ≥      and 
  ≥    

Hence, Submoularity of  says that the marginal 
profit of holding one more product in serviceable 
inventory decreases as the remanufacturable inventory 
increases, and the incremental profit of holding one 
more returned product in remanufacturable inventory 
decreases as the serviceable inventory increases. If 
 is concave, then the incremental profit when 
there is one more unit of serviceable inventory is 
decreasing in its inventory, and the incremental 
profit when there is one more unit of remanufac-
turable inventory is decreasing in its inventory. 
-Diagonal dominance implies that the benefit of 
having one more unit of serviceable inventory de-
creases faster in its inventory level than in re-
manufacturable inventory level, and the benefit of 
having one more unit of remanufacturable in-
ventory decreases faster in its inventory level than 
in serviceable inventory level. Note that Submo-
dularity and-Diagonal dominance together imply 
Concavity.

From the Submodularity, -Diagonal dominance, 
and Concavity of the optimal profit function , the 
following properties of the optimal disposal policy 
can be deduced. It can be easily verified that prop-
erties (i)~(iii) characterize the optimal disposal pol-
icy as a monotonic threshold type of the curve.

(i) If the firm accepts a returned product for re-
manufacturing in state    , then it 
also accepts a returned product for remanu-
facturing in state   .

(ii) If the firm accepts a returned product for re-
manufacturing in state     , then it 
also accepts a returned product for remanu-
facturing in state   .

(iii) If the firm accepts a returned product for 
remanufacturing in state    , then it 
also accepts a returned product for remanu-
facturing in state     .

The following theorem provides upper bounds on 
   and   , which states that the 
marginal profit obtained with holding one more 
unit of serviceable (remanufacurable) product can-
not exceed the one stage discounted unit sales 
price. These bounds are used in truncating the state 
space when the value iteration method computes 
the function  under the optimal policy.

Theorem 1
(i)    ≤ 
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   Figure 1. Graphical representation of optimal 
disposal policy

(ii)   ≤ 
Proof: See the Appendix.

The arguments made for the discounted profit 
problem can be also applied to the  average profit 
problem. We can define the optimal average profit 
problem in a similar way to the optimal discounted 
one as follows:

   

 
 



     (7)

        

     

        

where   is the optimal value function. Then, from 
the theory of Markov decision processes,

               (8)

where   is the optimal average profit during the 
expected transition time.

Again we consider a value iteration algorithm to 
solve for equation (8) in which       for 
every state    and

           … . (9)

Here    can be viewed as the optimal val-
ue function when the problem is terminated after  
iterations. The following result shows that equation 
(8) has a well-defined solution, and    in 
equation (9) converges to    in equation 
(8).

Theorem 2 There exists an integer  , a constant 
  and a function   such that      
    converges to    for all    
…     as →∞ .

Proof : This lemma can be proven using the same 
argument as in Carr and Duenyas (2000). The es-
sence of the proof is to convert the original prob-
lem to one with finite state space and apply Theorem 
8.4.5 of Puterman (2005). Without loss of opti-
mality, we can add the constraint to the original 
problem that we can not produce a new product 
when   . If   , this indicates 
that the expected amount of holding costs incurred 
by holding   units of serviceable inventory until 
the next transition is greater than the opportunity 
cost (sales revenue) that would be incurred due to 
a serviceable product not being available if the 

next event were the demand arrival. Similarly, we 
can add the constraint to the original problem that 
we can not stock returned products when 
   . Since we have finite action spaces and 
the model with finite state space is unichain, the 
result follows from Theorem 8.4.5 of Puterman. 

4.  A Numerical Example

We present an example to illustrate the results ob-
tained in the previous section. The optimal policy 
can be found easily using value iteration. Because 
of the magnitude of the state space, however, it is 
necessary to truncate the inventory level of service-
able and remanufacturable products. We apply the 
linear to approximation for the value function  
along and beyond the truncated state space (see Ha 
(1997) for linear approximation).

Arrivals for demand and product return are Poisson 
distributions with rates     and    , res-
pectively. Times for manufacturing a new product 
and remanufacturing a returned product are expo-
nential with rates     and    , respectively. 
Holding cost rates are    and   . The 
sales price of a product is   . The disposal 
revenue of a returned product is   . The unit cost 
of manufacturing a new product is    . The 
unit cost of remanufacturing is   . The discount 
factor is   .

The optimal disposal policy is graphically repre-
sents in <Figure 1> in which it is characterized by 
a monotonic threshold type of function,  , 
which is decreasing in   as discussed in the pre-
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vious section. It separates the state space into two 
regions: 1) Dispose of a returned product and 2) 
Admit a returned product for remanufacturing. If 
 ≥  , it is optimal to dispose of a returned 
product. Otherwise, it is optimal to accept a re-
turned product. In this example, if a product return 
occurs in state (0, 5), the firm should admit it for 
remanufacturing. If a product return occurs in state 
(5, 7), the firm should dispose of it.

If the system starts within Region  , we note 
that the remanufacturable inventory level cannot 
move up across the boundary of the curve. To see 
this, suppose that the system starts in state (5, 7) 
where there are following three possible transitions: 
the remanufacturable inventory level decreases by 
one and the inventory level of serviceable product 
increases by one, the inventory level of serviceable 
product increases by one, and the serviceable in-
ventory level decreases by one. All the transition 
makes the system not move up across the boun-
dary    .

5.  Computational study

Having examined the structure of the optimal 
policy in the previous section, we next proceed to 
numerically investigate how the optimal disposal 
decision changes as a function of the problem 
parameters. To this end, we compute the expected 
discounted infinite horizon profits when there are 
no initial inventories of serviceable and remanufac-
turable products,   and found the optimal 
disposal control. We refer the example presented in 
the previous section and test it with varying sys-
tem parameters. For the detail of implementing the 
value iteration method, we refer to Section 5.2 of 
Bertsekas (1987).

Table 1. Reference example used in the numerical 
test

          

0.7 0.3 0.4 2 0.4 0.2 200 5 100 5 0.99

Based on the computational experiments, we ob-
serve the following monotonicity of the optimal 
disposal policy,  , with respect to the time pa-
rameters:

•   is increasing as demand rate,  , increases 
(see <Figure 2>).

•   is decreasing as product return rate,  , 
increases (see <Figure 3>).

•   is decreasing as manufacturing rate,  , 
increases (see <Figure 4>).

If demand rate increases while other conditions 
remain the same, the chance of enhancing sales 
revenue also increases. Hence, the firm will in-
crease the disposal curve to accept more returned 
products rather than to dispose of them. To explain 
the second observation, suppose that product return 
rate increases with other conditions remaining the 
same. Then, it is reasonable to expect that the firm 
will delay a disposal decision because the firm will 
try to balance the inventory level between service-
able and remanufacturable products. The intuition 
behind the third observation as follows. The increase 
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Figure 4. The effect of manufacturing rate on the 
optimal disposal policy

in the manufacturing rate will increase inventory of 
serviceable product more rapidly and thus the firm 
is willing to keep less inventory of remanufactur-
able product. Hence, the firm’s strategy will prefer 
to disposing of a returned product.

Next are the results for the marginal analysis of 
the optimal disposal policy with respect to revenue 
and cost parameters.

•    is increasing as  increases (see <Figure 
5>).

•    is decreasing as   increases (see <Figure 
6>).

•    is decreasing as  increases (see <Figure 
7>).

•    is decreasing as either   or   increases 
(see <Figure 8> and <Figure 9>).

The first observation states that as  gets larger, it 
may become optimal to switch from disposing of re-
turned products to accepting them for remanufactur-
ing in any given state. When  is increased, the poli-
cy tends to give more importance to the inventories 
of remanufacturable product. In contrast, if   is in-
creased, disposing of returned product is more profit-
able and the policy works towards building a less in-
ventory of remanufacturable product. If  is in-
creased, transforming remanufacturable product into 
serviceable product becomes expensive and the policy 
tends to dispose of returned product than build an in-
ventory of remanufacturable product. If inventory 
holding cost of either serviceable or remanufacturable 
products is increased with other conditions remaining 
the same, the policy works towards building a less in-

ventory of remanufacturable product. Therefore, the 
disposal curve shifts down so that the firm can dis-
pose of more returned products.
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Figure 5. The effect of revenue on the optimal 
disposal policy
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Figure 10. The effect of demand rates on the 
optimal profit

It is interesting to see that   does not nec-
essarily increase in   (see <Figure 10>). The in-
tuition behind this is as follows. Increasing  ,
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Figure 11. The effect of remanufacturing rates on 
the optimal profit

when   is low, may contribute to enhancing 
the sales revenue. On the other hand, if   be-
comes increased when   is high, the policy 
will accept more returned products for remanu-
facturing and thus sales revenue rate  will be 
offset by the increased remanufacturing cost and 
inventory holding cost of remanufacturable product. 
In fact, computational results show that   is 
convex with respect to  . Hence, it is conjectured 
that there exists   which maximizes the firm's 
profit given system parameters.

It is also interesting to see that  , does not 
necessarily increase in (see <Figure 11>). The 
intuition behind this is as follows. As long as in-
ventory of remanufacturable product is available, 
increasing   also increases the inventory level of 
serviceable products. Hence, when   is not 
low, it can contribute to enhancing the sales revenue. 
However, with increasing   beyond some point, 
increased remanufacturing cost and inventory hold-
ing cost of serviceable products may offset the in-
creased sales revenue. Computational results show 
that   is convex with respect to   Hence, it 
is conjectured that there exists   which maximizes 
the firm’s profit given system parameters.

6.  Conclusion

In this paper we considered a product recovery 
management where product returns occur randomly 
and can be accepted for remanufacturing or dis-
posed of depending on the state of the system. 
While most of product recovery models in the lit-
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erature deal with fixed disposal policies, we exam-
ined the structure of the optimal disposal policy. In 
particular, we examined the policy that utilizes the 
information of inventory of both serviceable and 
remanufacturable products. Under the assumption of 
Poisson demand and return processes and expo-
nentially distributed manufacturing and remanufac-
turing processes, we studied the issue of when the 
firm should dispose of returned products and admit 
them for remanufacturing to maximize its profit 
subject to the system costs.

Using value iteration through the Markov deci-
sion process, we numerically characterized the stru-
cture of an optimal disposal policy as a monotonic 
threshold function. A disposal is allowed only 
when the remanufacturable inventory level exceeds 
the threshold which is the function of the service-
able inventory level and it is decreasing as the  
serviceable inventory level increases.

We also implemented a sensitivity analysis and 
observed many meaningful monotonic properties of 
the optimal disposal policy and the optimal profit 
with respect to system parameters. We believe that 
the properties and insights identified in this paper 
will be very useful for studying more realistic 
models with arbitrary probability distributions other 
than exponential ones, since it is not possible to 
identify the optimal policies under those conditions.

One of the major extensions to the current model 
is to control the production of new product as well 
as the disposal of returned product, since it is a 
more effective strategy in handling the inventory of 
remanufacturable and serviceable products. This is-
sue has not been treated in the product recovery 
literature. The other direction of the future research 
is to study a disposal policy for a product recovery 
model that purchases new product from the outside 
source rather than manufactures inside.

Appendix

Proof of Theorem 1 : We denote by (D,A) the op-
timal action in state    where   and   re-
spectively represent Dispose of and Accept for re-
manufacturing actions. For any real valued function 
 on 



, define the following:
         , 
        

         , 
            ,

    
 


 

 



      

          .

(i) If    ,         ≤ 
 (by (7)). If    , 
           . 
      ≤  (by (7)).
         

      ≤  (by (7)).

To show that    ≤ , we focus on 
all possible combinations of actions in      
and   .
For   , 
      ≤  (by (7)). 

For ,
    ≤  (by (7)).

For  ,
            ≤  
         ≤  (by (7)).

For ,
             

≤          ≤  (by (7)).
Therefore, it follows that

    

     

     

    ≤ 

   

≤ 

≤ ≤ 

(ii) The arguments similar to (i) can be applied 
here and we omit the detailed proof.
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