DOI QR코드

DOI QR Code

A Proteomic Screen for Presynaptic Terminal N-type Calcium Channel (CaV2.2) Binding Partners

  • Khanna, Rajesh (Cellular and Molecular Biology Division, Toronto Western Research Institute, University Health Network) ;
  • Zougman, Alexandre (Protana Analytical Services) ;
  • Stanley, Elise F. (Cellular and Molecular Biology Division, Toronto Western Research Institute, University Health Network)
  • Published : 2007.05.31

Abstract

N type calcium channels (CaV2.2) play a key role in the gating of transmitter release at presynaptic nerve terminals. These channels are generally regarded as parts of a multimolecular complex that can modulate their open probability and ensure their location near the vesicle docking and fusion sites. However, the proteins that comprise this component remain poorly characterized. We have carried out the first open screen of presynaptic CaV2.2 complex members by an antibody-mediated capture of the channel from purified rat brain synaptosome lysate followed by mass spectroscopy. 589 unique peptides resulted in a high confidence match of 104 total proteins and 40 synaptosome proteome proteins. This screen identified several known CaV2.2 interacting proteins including syntaxin 1, VAMP, protein phosphatase 2A, $G_{o\alpha}$, G$\beta$ and spectrin and also a number of novel proteins, including clathrin, adaptin, dynamin, dynein, NSF and actin. The unexpected proteins were classified within a number of functional classes that include exocytosis, endocytosis, cytoplasmic matrix, modulators, chaperones, and cell-signaling molecules and this list was contrasted to previous reports that catalogue the synaptosome proteome. The failure to detect any postsynaptic density proteins suggests that the channel itself does not exhibit stable trans-synaptic attachments. Our results suggest that the channel is anchored to a cytoplasmic matrix related to the previously described particle web.

Keywords

References

  1. Atlas, D. (2001) Functional and physical coupling of voltage-sensitive calcium channels with exocytotic proteins: ramifications for the secretion mechanism. J. Neurochem. 77, 972-985 https://doi.org/10.1046/j.1471-4159.2001.00347.x
  2. Bennett, M. K., Calakos, N. and Scheller, R. H. (1992) Syntaxin: A synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Sci. 257, 255-259 https://doi.org/10.1126/science.1321498
  3. Blackstone, C. D., Moss, S. J., Martin, L. J., Levey, A. I., Price, D. L. and Huganir, R. L. (1992) Biochemical characterization and localization of a non-N-methyl-D-aspartate glutamate receptor in rat brain. J. Neurochem. 58, 1118-1126 https://doi.org/10.1111/j.1471-4159.1992.tb09370.x
  4. Calakos, N., Schoch, S., Sudhof, T. C. and Malenka, R. C. (2004) Multiple roles for the active zone protein RIM1alpha in late stages of neurotransmitter release. Neuron 42, 889-896 https://doi.org/10.1016/j.neuron.2004.05.014
  5. Dieck T. S., Altrock, W. D., Kessels, M. M., Qualmann, B., Regus, H., Brauner, D., Fejtova, A., Bracko, O., Gundelfinger, E. D. and Brandstatter, J. H. (2005) Molecular dissection of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. J. Cell Biol. 168, 825-836 https://doi.org/10.1083/jcb.200408157
  6. Dresbach, T., Qualmann, B., Kessels, M. M., Garner, C. C. and Gundelfinger, E. D. (2001) The presynaptic cytomatrix of brain synapses. Cell Mol. Life Sci. 58, 94-116 https://doi.org/10.1007/PL00000781
  7. El Far, O., Charvin, N., Leveque, C., Martin-Moutot, N., Takahashi, M. and Seagar, M. J. (1995) Interaction of a synaptobrevin (VAMP)-syntaxin complex with presynaptic calcium channels. FEBS Letters, 361, 101-105 https://doi.org/10.1016/0014-5793(95)00156-4
  8. Fried, R. C. and Blaustein, M. P. (1978) Retrieval and recycling of synaptic vesicle membrane in pinched-off nerve terminals (synaptosomes). J. Cell Biol. 78, 685-700 https://doi.org/10.1083/jcb.78.3.685
  9. Geppert, M., Goda, Y., Stevens, C. F. and Südhof, T. C. (1997) The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Nature (Lond.) 387, 810-814 https://doi.org/10.1038/42954
  10. Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. and Grant, S. G. (2000) Proteomic analysis of NMDA receptoradhesion protein signaling complexes. Nat. Neurosci. 3, 661-669 https://doi.org/10.1038/76615
  11. Ishikawa, H., Shimada, O., Murakami, T., Saisu, H. and Abe, T. (1993) Immunohistochemical localization of the proteins associated with brain N-type calcium channels. Ann. N.Y. Acad. Sci. 707, 376-378 https://doi.org/10.1111/j.1749-6632.1993.tb38075.x
  12. Jones, O. T., Bernstein, G. M., Jones, E. J., Jugloff, D. G., Law, M., Wong, W. and Mills, L. R. (1997) N-Type calcium channels in the developing rat hippocampus: subunit, complex, and regional expression. J. Neurosci. 17, 6152-6164 https://doi.org/10.1523/JNEUROSCI.17-16-06152.1997
  13. Khanna, R., Li, Q., Sun, L., Collins, T. J. and Stanley, E. F. (2006) N type Ca(2+) channels and RIM scaffold protein covary at the presynaptic transmitter release face but are components of independent protein complexes. Neurosci. 140, 1201-1208 https://doi.org/10.1016/j.neuroscience.2006.04.053
  14. Khanna, R., Sun, L., Li, Q., Guo, L. and Stanley, E. F. (2006) Long splice variant N type calcium channels are clustered at presynaptic transmitter release sites without modular adaptor proteins. Neurosci. 138, 1115-1125 https://doi.org/10.1016/j.neuroscience.2005.12.050
  15. Koh, T. W., Verstreken, P. and Bellen, H. J. (2004) Dap160/ intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis. Neuron 43, 193-205 https://doi.org/10.1016/j.neuron.2004.06.029
  16. Lau, L. F., Mammen, A., Ehlers, M. D., Kindler, S., Chung, W. J., Garner, C. C. and Huganir, R. L. (1996) Interaction of the N-methyl-D-aspartate receptor complex with a novel synapseassociated protein, SAP102. J. Biol. Chem. 271, 21622-21628 https://doi.org/10.1074/jbc.271.35.21622
  17. Li, D., Wang, F., Lai, M., Chen, Y. and Zhang, J. F. (2005) A protein phosphatase 2calpha-Ca2+ channel complex for dephosphorylation of neuronal Ca2+ channels phosphorylated by protein kinase C. J .Neurosci. 25, 1914-1923 https://doi.org/10.1523/JNEUROSCI.4790-04.2005
  18. Li, K. W., Hornshaw, M. P., Van der Schors, R. C., Watson, R., Tate, S., Casetta, B., Jimenez, C. R., Gouwenberg, Y., Gundelfinger, E. D., Smalla, K. and Smit, A. B. (2004a) Proteomics analysis of rat brain postsynaptic density. Implications of the diverse protein functional groups for the integration of synaptic physiology. J. Biol. Chem. 279, 987-1002 https://doi.org/10.1074/jbc.M303116200
  19. Li, Q., Lau, A., Morris, T. J., Guo, L., Fordyce, C. B. and Stanley, E. F. (2004b) A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. J. Neurosci. 24, 4070-4081 https://doi.org/10.1523/JNEUROSCI.0346-04.2004
  20. Marie, B., Sweeney, S. T., Poskanzer, K. E., Roos, J., Kelly, R. B. and Davis, G. W. (2004) Dap160/intersectin scaffolds the periactive zone to achieve high-fidelity endocytosis and normal synaptic growth. Neuron 43, 207-219 https://doi.org/10.1016/j.neuron.2004.07.001
  21. Maximov, A. and Bezprozvanny, I. (2002) Synaptic targeting of N-type calcium channels in hippocampal neurons. J. Neurosci. 22, 6939-6952 https://doi.org/10.1523/JNEUROSCI.22-16-06939.2002
  22. Maximov, A., Sudhof, T. C. and Bezprozvanny, I. (1999) Association of neuronal calcium channels with modular adaptor proteins. J. Biol. Chem. 274, 24453-24456 https://doi.org/10.1074/jbc.274.35.24453
  23. Mirotznik, R. R., Zheng, X. and Stanley, E. F. (2000) G-Protein types involved in calcium channel inhibition at a presynaptic nerve terminal. J. Neurosci. 20, 7614-7621 https://doi.org/10.1523/JNEUROSCI.20-20-07614.2000
  24. Peng, J., Kim, M. J., Cheng, D., Duong, D. M., Gygi, S. P. and Sheng, M. (2004) Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J. Biol. Chem. 279, 21003-21011 https://doi.org/10.1074/jbc.M400103200
  25. Perkins, D. N., Pappin, D. J., Creasy, D. M. and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551-3567 https://doi.org/10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
  26. Phillips, G. R., Florens, L., Tanaka, H., Khaing, Z. Z., Fidler, L., Yates, J. R., III and Colman, D. R. (2005) Proteomic comparison of two fractions derived from the transsynaptic scaffold. J. Neurosci. Res. 81, 762-775 https://doi.org/10.1002/jnr.20614
  27. Phillips, G. R., Huang, J. K., Wang, Y., Tanaka, H., Shapiro, L., Zhang, W. et al. (2001) The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 32, 63-77 https://doi.org/10.1016/S0896-6273(01)00450-0
  28. Qian, J., Colmers, W. F. and Saggau, P. (1997) Inhibition of synaptic transmission by neuropeptide Y in rat hippocampal area CA1: Modulation of presynaptic $Ca^{2+}$ entry. J. Neurosci. 17, 8169-8177 https://doi.org/10.1523/JNEUROSCI.17-21-08169.1997
  29. Saisu, H., Ibaraki, K., Yamaguchi, T., Sekine, Y. and Abe, T. (1991) Monoclonal antibodies immunoprecipitating omega-conotoxin- sensitive calcium channel molecules recognize two novel proteins localized in the nervous system. Biochem. Biophys. Res. Commun. 181, 59-66 https://doi.org/10.1016/S0006-291X(05)81381-6
  30. Schmitt-Ulms, G., Hansen, K., Liu, J., Cowdrey, C., Yang, J., DeArmond, S. J., Cohen, F. E., Prusiner, S. B. and Baldwin, M. A. (2004) Time-controlled transcardiac perfusion crosslinking for the study of protein interactions in complex tissues. Nat. Biotechnol. 22, 724-731 https://doi.org/10.1038/nbt969
  31. Schrimpf, S. P., Meskenaite, V., Brunner, E., Rutishauser, D., Walther, P., Eng, J., Aebersold, R. and Sonderegger, P. (2005) Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry. Proteomics 5, 2531-2541 https://doi.org/10.1002/pmic.200401198
  32. Sheng, Z. H., Westenbroek, R. E. and Catterall, W. A. (1998) Physical link and functional coupling of presynaptic calcium channels and the synaptic vesicle docking/fusion machinery. J. Bioenerg. Biomembr. 30, 335-345 https://doi.org/10.1023/A:1021985521748
  33. Shevchenko, A., Wilm, M., Vorm, O. and Mann, M. (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal.Chem. 68, 850-858 https://doi.org/10.1021/ac950914h
  34. Spafford, J. D., Munno, D. W., Van Nierop, P., Feng, Z. P., Jarvis, S. E., Gallin, W. J., Smit, A. B., Zamponi, G. W. and Syed, N. I. (2003) Calcium channel structural determinants of synaptic transmission between identified invertebrate neurons. J. Biol. Chem. 278, 4258-4267 https://doi.org/10.1074/jbc.M211076200
  35. Stanley, E. F. (1997) The calcium channel and the organization of the presynaptic transmitter release face. Trends Neurosci. 20, 404-409 https://doi.org/10.1016/S0166-2236(97)01091-6
  36. Sun, L., Li, Q., Khanna, R., Chan, A. W., Wong, F. and Stanley, E. F. (2006) Transmitter release face Ca channel clusters persist at isolated presynaptic terminals. Eur. J. Neurosci. 23, 1391-1396 https://doi.org/10.1111/j.1460-9568.2006.04653.x
  37. Sunderland, W. J., Son, Y. J., Miner, J. H., Sanes, J. R. and Carlson, S. S. (2000) The presynaptic calcium channel is part of a transmembrane complex linking a synaptic laminin (alpha4beta2gamma1) with non-erythroid spectrin. J. Neurosci. 20, 1009-1019 https://doi.org/10.1523/JNEUROSCI.20-03-01009.2000
  38. Takao-Rikitsu, E., Mochida, S., Inoue, E., guchi-Tawarada, M., Inoue, M., Ohtsuka, T. and Takai, Y. (2004) Physical and functional interaction of the active zone proteins, CAST, RIM1, and Bassoon, in neurotransmitter release. J. Cell Biol. 164, 301-311 https://doi.org/10.1083/jcb.200307101
  39. Vigers, A. J. and Pfenninger, K. H. (1991) N-type and L-type calcium channels are present in nerve growth cones. Numbers increase on synaptogenesis. Brain Res. Dev. Brain Res. 60, 197-203 https://doi.org/10.1016/0165-3806(91)90048-N
  40. Witzmann, F. A., Arnold, R. J., Bai, F., Hrncirova, P., Kimpel, M. W., Mechref, Y. S., McBride, W. J., Novotny, M. V., Pedrick, N. M., Ringham, H. N. and Simon, J. R. (2005) A proteomic survey of rat cerebral cortical synaptosomes. Proteomics 5, 2177-2201 https://doi.org/10.1002/pmic.200401102
  41. Ziv, N. E. and Garner, C. C. (2004) Cellular and molecular mechanisms of presynaptic assembly. Nat. Rev. Neurosci. 5, 385-399 https://doi.org/10.1038/nrn1370

Cited by

  1. Challenging the catechism of therapeutics for chronic neuropathic pain: Targeting CaV2.2 interactions with CRMP2 peptides vol.557, 2013, https://doi.org/10.1016/j.neulet.2013.06.057
  2. Proteomic Approaches and Identification of Novel Therapeutic Targets for Alcoholism vol.39, pp.1, 2014, https://doi.org/10.1038/npp.2013.182
  3. Protein interactome mining defines melatonin MT1receptors as integral component of presynaptic protein complexes of neurons vol.60, pp.1, 2016, https://doi.org/10.1111/jpi.12294
  4. Proteogenomics of the human hippocampus: The road ahead vol.1854, pp.7, 2015, https://doi.org/10.1016/j.bbapap.2015.02.010
  5. A membrane-delimited N-myristoylated CRMP2 peptide aptamer inhibits CaV2.2 trafficking and reverses inflammatory and postoperative pain behaviors vol.156, pp.7, 2015, https://doi.org/10.1097/j.pain.0000000000000147
  6. Presynaptic calcium channels and α3-integrins are complexed with synaptic cleft laminins, cytoskeletal elements and active zone components vol.115, pp.3, 2010, https://doi.org/10.1111/j.1471-4159.2010.06965.x
  7. Characterization of prion protein-enriched domains, isolated from rat cerebellar granule cells in culture vol.110, pp.3, 2009, https://doi.org/10.1111/j.1471-4159.2009.06198.x
  8. N-type and P/Q-type calcium channels regulate differentially the release of noradrenaline, ATP and β-NAD in blood vessels vol.56, pp.2, 2009, https://doi.org/10.1016/j.neuropharm.2008.09.007
  9. Modulation of nociceptive ion channels and receptors via protein-protein interactions: implications for pain relief vol.9, pp.4, 2015, https://doi.org/10.1080/19336950.2015.1051270
  10. Expression of N-type calcium channels in human adrenocortical cells and their contribution to corticosteroid synthesis vol.34, pp.2, 2011, https://doi.org/10.1038/hr.2010.191
  11. Membrane signalling complexes: Implications for development of functionally selective ligands modulating heptahelical receptor signalling vol.21, pp.2, 2009, https://doi.org/10.1016/j.cellsig.2008.08.013
  12. Transient elevation of synaptosomal mitoenergetic proteins and Hsp70 early in a rat model of chronic cerebrovascular hypoperfusion vol.34, pp.4, 2013, https://doi.org/10.1007/s10072-012-1063-4
  13. Emerging roles of collapsin response mediator proteins (CRMPs) as regulators of voltage-gated calcium channels and synaptic transmission vol.3, pp.2, 2010, https://doi.org/10.4161/cib.3.2.10620
  14. Control of neuronal voltage-gated calcium ion channels from RNA to protein vol.36, pp.10, 2013, https://doi.org/10.1016/j.tins.2013.06.008
  15. Regulation of N-type Voltage-Gated Calcium Channels and Presynaptic Function by Cyclin-Dependent Kinase 5 vol.75, pp.4, 2012, https://doi.org/10.1016/j.neuron.2012.06.023
  16. Rab3a interacting molecule (RIM) and the tethering of pre-synaptic transmitter release site-associated CaV2.2 calcium channels vol.112, pp.2, 2010, https://doi.org/10.1111/j.1471-4159.2009.06466.x
  17. Synaptic vesicle tethering and the CaV2.2 distal C-terminal vol.8, 2014, https://doi.org/10.3389/fncel.2014.00071
  18. Signaling complexes of voltage-gated sodium and calcium channels vol.486, pp.2, 2010, https://doi.org/10.1016/j.neulet.2010.08.085
  19. Transsynaptic channelosomes vol.5, pp.5, 2011, https://doi.org/10.4161/chan.5.5.16472
  20. Systems approach to explore components and interactions in the presynapse vol.9, pp.12, 2009, https://doi.org/10.1002/pmic.200800767
  21. Dynamin-1 co-associates with native mouse brain BKCachannels: Proteomics analysis of synaptic protein complexes vol.584, pp.5, 2010, https://doi.org/10.1016/j.febslet.2009.12.061
  22. PDLIM5 is not a neuronal CaV2.2 adaptor protein vol.12, pp.8, 2009, https://doi.org/10.1038/nn0809-957a
  23. Proteomic Analysis of Dynein-Interacting Proteins in Amyotrophic Lateral Sclerosis Synaptosomes Reveals Alterations in the RNA-Binding Protein Staufen1 vol.15, pp.2, 2016, https://doi.org/10.1074/mcp.M115.049965
  24. Ex vivo identification of protein–protein interactions involving the dopamine transporter vol.196, pp.2, 2011, https://doi.org/10.1016/j.jneumeth.2011.01.023