DOI QR코드

DOI QR Code

Cell Selectivity of an Antimicrobial Peptide Melittin Diastereomer with D-amino Acid in the Leucine Zipper Sequence

  • Zhu, Wan Long (Department of Bio-Materials, Graduate School, Chosun University) ;
  • Nan, Yong Hai (Research Center for Proteineous Materials and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University) ;
  • Hahm, Kyung-Soo (Department of Bio-Materials, Graduate School, Chosun University) ;
  • Shin, Song-Yub (Department of Bio-Materials, Graduate School, Chosun University)
  • Published : 2007.11.30

Abstract

Melittin (ME), a linear 26-residue non-cell-selective antimicrobial peptide, displays strong lytic activity against bacterial and human red blood cells. To design ME analogue with improved cell selectivity, we synthesized a melittin diastereomer (ME-D) with D-amino acid in the leucine zipper sequence (Leu-6, Lue-13 and Ile-20). Compared to ME, ME-D exhibited the same or 2-fold higher antibacterial activity but 8-fold less hemolytic activity. Circular dichroism analysis revealed that ME-D has much less $\alpha$-helical content in $\alpha$-helical content in the presence of zwitterionic EYPC/cholesterol (10 : 1, w/w) liposomes compared to negatively charged EYPE/EYPG (7 : 3, w/w) liposomes. The blue shift of the fluorescence emission maximum of ME-D in zwitterionic EYPC/cholesterol (10 : 1, w/w) liposomes was much smaller than in negatively charged EYPE/EYPG (7 : 3, w/w) liposomes. These results suggested that the improvement in therapeutic index/cell selectivity of ME-D is correlated with its less permeability to zwitterionic membranes.

Keywords

References

  1. Andreu, D. and Rivas, L. (1998) Animal antimicrobial peptides: an overview, Biopolymers 47, 415-433. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<415::AID-BIP2>3.0.CO;2-D
  2. Asthana, N., Yadav, S. P. and Ghosh, J. K. (2004) Dissection of antibacterial and toxic activity of melittin: a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity. J. Biol. Chem. 279, 55042-55050. https://doi.org/10.1074/jbc.M408881200
  3. Blondelle, S. E., Simpkins, L. R., Perez-Paya, E. and Houghten, R. A. (1993) Influence of tryptophan residues on melittin's hemolytic activity. Biochim. Biophys. Acta 1202, 331-336. https://doi.org/10.1016/0167-4838(93)90024-L
  4. Boman, H. G. (1995) Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13, 61-92. https://doi.org/10.1146/annurev.iy.13.040195.000425
  5. Chen, Y., Mant, C. T., Farmer, S. W., Hancock, R. E., Vasil, M. L. and Hodges, R. S. (2005) Rational design of $\alpha$-helical antimicrobial peptides with enhanced activities and specificity/ therapeutic index. J. Biol. Chem. 280, 12316-12329. https://doi.org/10.1074/jbc.M413406200
  6. Cudic. M., Condie, B. A., Weiner, D. J., Lysenko, E. S., Xiang, Z. Q., Insug, O., Bulet, P. and Otvos, L. Jr. (2002) Development of novel antibacterial peptides that kill resistant isolates. Peptides 23, 2071-2083. https://doi.org/10.1016/S0196-9781(02)00244-9
  7. Glukhov, E., Stark, M., Burrows, L. L. and Deber, C. M. (2005) Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. J. Biol. Chem. 280, 33960-33967. https://doi.org/10.1074/jbc.M507042200
  8. Habermann, E. and Jentsch, J. (1967) Sequence analysis of melittin from trytic and peptic degradation products. Hoppe-Seyler's Z. Physiol. Chem. 348, 37-50. https://doi.org/10.1515/bchm2.1967.348.1.37
  9. Mao, D. and Wallace, B. A. (1984) Differential light scattering and absorption flattening optical effects are minimal in the circular dichroism spectra of small unilamellar vesicles. Biochemistry 23, 2667-2673. https://doi.org/10.1021/bi00307a020
  10. Oh, D., Shin, S. Y., Lee, S., Kang, J. H., Kim, S. D., Ryu, P. D., Hahm, K. S. and Kim Y. (2000) Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1-8)-magainin 2(1-12) and its analogues, on their antibiotic activities and structures. Biochemistry 39, 11855-11864. https://doi.org/10.1021/bi000453g
  11. Oren, Z. and Shai, Y. (1997) Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structurefunction study. Biochemistry 36, 1826-1835. https://doi.org/10.1021/bi962507l
  12. Shai, Y., Bach, D. and Yanovsky, A. (1990) Channel formation properties of synthetic pardaxin and analogues. J. Biol. Chem. 265, 20202-20209.
  13. Park, S., Son, W. S., Kim, Y. J., Kwon, A. R. and Lee, B. J. (2007) NMR spectroscopic assessment of the structure and dynamic properties of an amphibian antimicrobial peptide (Gaegurin 4) bound to SDS micelles. J. Biochem. Mol. Biol. 40, 261-269. https://doi.org/10.5483/BMBRep.2007.40.2.261
  14. Shai, Y. (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by $\alpha$-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta 1462, 55-70. https://doi.org/10.1016/S0005-2736(99)00200-X
  15. Shin, S. Y., Lee, M. K. and Hahm, K. S. (1996) Antibacterial Activities of Peptides Designed as hybrids of antimicrobial peptides. J. Biochem. Mol. Biol. 29, 545-548.
  16. Shin, S. Y., Kang, J. H., Jang, S. Y., Kim, K. L. and Hahm, K. S. (1999) Effects of the hinge region of cecropin A(1-8)- melittin(1-12), a synthetic antimicrobial peptide in antibacterial, antitumor, and vesicle-disrupting activity. J. Biochem. Mol. Biol. 32, 561-566.
  17. Shin, S. Y., Kang, J. H., Jang, S. Y., Kim, Y., Kim, K. L. and Hahm, K. S. (2000) Structure and antibiotic activity of a porcine myeloid antibacterial peptide, PMAP-23 and its analogues. J. Biochem. Mol. Biol. 33, 49-53.
  18. Shin, S. Y., Lee, S. H., Yang, S. T., Park, E. J., Lee, D. G., Lee, M. K., Eom, S. H. Song, W. K., Kim, Y., Hahm, K. S. and Kim, J. I. (2001) Antibacterial, antitumor and hemolytic activities of $\alpha$-helical antibiotic peptide, P18 and its analogs. J. Peptide Res. 58, 504-514. https://doi.org/10.1034/j.1399-3011.2001.00934.x
  19. Song, Y. M., Park, Y., Lim, S. S., Yang, S. T., Woo, E. R., Park, I. S., Lee, J. S., Kim, J. I., Hahm, K. S., Kim, Y. and Shin, S. Y. (2005) Cell selectivity and mechanism of action of antimicrobial model peptides containing peptoid residues. Biochemistry 44, 12094-12106. https://doi.org/10.1021/bi050765p
  20. Wu, C. S., Ikeda, K. and Yang, J. T. (1981) Ordered conformation of polypeptides and proteins in acidic dodecyl sulfate solution. Biochemistry 20, 566-570. https://doi.org/10.1021/bi00506a019
  21. Yan, H., Li, S., Sun, X., Mi, H. and He, B. (2003) Individual substitution analogs of Mel(12-26), melittin's C-terminal 15- residue peptide: their antimicrobial and hemolytic actions. FEBS Lett. 554, 100-104. https://doi.org/10.1016/S0014-5793(03)01113-X
  22. Yang, S. T., Shin, S. Y., Lee, C. W., Kim, Y. C., Hahm, K. S. and Kim, J. I. (2003) Selective cytotoxicity following Arg-to-Lys substitution in tritrpticin adopting a unique amphipathic turn structure. FEBS Lett. 540, 229-233. https://doi.org/10.1016/S0014-5793(03)00266-7
  23. Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415, 389-395. https://doi.org/10.1038/415389a
  24. Zhu, W. L., Lan, H., Park, I. S., Kim, J. I., Jin, H. Z., Hahm, K. S. and Shin, S. Y. (2006) Design and mechanism of action of a novel bacteria-selective antimicrobial peptide from the cellpenetrating peptide Pep-1. Biochem. Biophys. Res. Commun. 349, 769-774. https://doi.org/10.1016/j.bbrc.2006.08.094

Cited by

  1. Modulating Antimicrobial Activity and Mammalian Cell Biocompatibility with Glucosamine-Functionalized Star Polymers vol.17, pp.3, 2016, https://doi.org/10.1021/acs.biomac.5b01766
  2. Roles of d-Amino Acids on the Bioactivity of Host Defense Peptides vol.17, pp.7, 2016, https://doi.org/10.3390/ijms17071023
  3. Cell selectivity and anti-inflammatory activity of a Leu/Lys-rich α-helical model antimicrobial peptide and its diastereomeric peptides vol.31, pp.7, 2010, https://doi.org/10.1016/j.peptides.2010.03.032
  4. Insect natural products and processes: New treatments for human disease vol.41, pp.10, 2011, https://doi.org/10.1016/j.ibmb.2011.05.007
  5. Activity optimization of an undecapeptide analogue derived from a frog-skin antimicrobial peptide vol.31, pp.1, 2011, https://doi.org/10.1007/s10059-011-0005-y
  6. Dimerization of aurein 1.2: effects in structure, antimicrobial activity and aggregation of Cândida albicans cells vol.44, pp.6, 2013, https://doi.org/10.1007/s00726-013-1475-3
  7. Susceptibility of sheep, human, and pig erythrocytes to haemolysis by the antimicrobial peptide Modelin 5 vol.43, pp.8-9, 2014, https://doi.org/10.1007/s00249-014-0974-9
  8. Latarcins: versatile spider venom peptides vol.72, pp.23, 2015, https://doi.org/10.1007/s00018-015-2016-x
  9. De novo generation of short antimicrobial peptides with simple amino acid composition vol.166, pp.1-3, 2011, https://doi.org/10.1016/j.regpep.2010.08.010
  10. Influence of antimicrobial peptides on the formation of nonlamellar lipid mesophases vol.1778, pp.10, 2008, https://doi.org/10.1016/j.bbamem.2008.05.014
  11. Recent Developments in Antimicrobial-Peptide-Conjugated Gold Nanoparticles 2017, https://doi.org/10.1021/acs.bioconjchem.7b00368
  12. Improved Protease Stability of the Antimicrobial Peptide Pin2 Substituted with d-Amino Acids vol.32, pp.6, 2013, https://doi.org/10.1007/s10930-013-9505-2
  13. Antimicrobial Peptides from Skin Secretions ofHypsiboas pulchellus(Anura: Hylidae) vol.77, pp.4, 2014, https://doi.org/10.1021/np4009317
  14. NKCS, a Mutant of the NK-2 Peptide, Causes Severe Distortions and Perforations in Bacterial, But Not Human Model Lipid Membranes vol.20, pp.4, 2015, https://doi.org/10.3390/molecules20046941
  15. Sensing based on assessment of non-monotonous effect determined by target analyte: Case study on pore-forming compounds vol.24, pp.12, 2009, https://doi.org/10.1016/j.bios.2009.05.007
  16. Candidacidal mechanism of a Leu/Lys-rich α-helical amphipathic model antimicrobial peptide and its diastereomer composed of D,L-amino acids vol.16, pp.11, 2010, https://doi.org/10.1002/psc.1268
  17. Clinical Efficacy of a Specifically Targeted Antimicrobial Peptide Mouth Rinse: Targeted Elimination of Streptococcus mutans and Prevention of Demineralization vol.45, pp.5, 2011, https://doi.org/10.1159/000330510
  18. Phospholipid Ether Linkages Significantly Modulate the Membrane Affinity of the Antimicrobial Peptide Novicidin vol.248, pp.3, 2015, https://doi.org/10.1007/s00232-015-9792-y
  19. Iterative Antimicrobial Candidate Selection from InformedD-/L-Peptide Dimer Libraries vol.14, pp.18, 2013, https://doi.org/10.1002/cbic.201300243
  20. Design and characterization of short antimicrobial peptides using leucine zipper templates with selectivity towards microorganisms vol.46, pp.11, 2014, https://doi.org/10.1007/s00726-014-1802-3
  21. Control of cell selectivity of antimicrobial peptides vol.1788, pp.8, 2009, https://doi.org/10.1016/j.bbamem.2008.09.013
  22. Effect of Repetitive Lysine-Tryptophan Motifs on the Eukaryotic Membrane vol.14, pp.1, 2013, https://doi.org/10.3390/ijms14012190
  23. Novel Method To Identify the Optimal Antimicrobial Peptide in a Combination Matrix, Using Anoplin as an Example vol.58, pp.2, 2013, https://doi.org/10.1128/AAC.02369-13
  24. Design and Application of Antimicrobial Peptide Conjugates vol.17, pp.5, 2016, https://doi.org/10.3390/ijms17050701
  25. Leptodactylus latrans Amphibian Skin Secretions as a Novel Source for the Isolation of Antibacterial Peptides vol.23, pp.11, 2018, https://doi.org/10.3390/molecules23112943