A pilot study of neuroprotection with umbilical cord blood cell transplantation for preterm very low birth weight infants

극소 저 출생체중 미숙아에서 자가 제대혈 줄기세포 이식을 통한 신경 손상 방지 연구

  • 채규영 (포천중문의대 소아과학교실) ;
  • 이규형 (포천중문의대 소아과학교실) ;
  • 은소희 (고려대학교 의과대학 소아과학교실) ;
  • 최병민 (고려대학교 의과대학 소아과학교실) ;
  • 은백린 (고려대학교 의과대학 소아과학교실) ;
  • 강훈철 (인제대학교 의과대학 소아과학교실) ;
  • 최명재 (인제대학교 의과대학 소아과학교실) ;
  • 김남근 (포천중문의대 임상의학연구소) ;
  • 오도연 (포천중문의대 임상의학연구소)
  • Received : 2007.07.17
  • Accepted : 2007.07.30
  • Published : 2007.09.15

Abstract

Purpose : Preterm very low birth weight infant have high rate of adverse neurodevelopmental sequale. Recently, there have been lots of reports that human umbilical cord blood transplantation ameliorates functional deficits in animal models as hypoxic ischemic injury. This pilot study was undertaken to determine the clinical efficacy and safety of autologous umbilical cord blood cell transplantation for preventing neurodevelopmental sequale in perterm VLBW. Methods : Subjects were 26 preterm infants whose birth weight are less than 1,500 g and delivered under the intrauterine period 34 weeks. Autologous umbilical mononuclear cells (about $5.87{\times}10^7/kg$) were injected to neonate via the umbilical vein on the postnatal 24-48 hour. The therapeutic efficacy was assessed by numbers of nucleated RBC, urinary uric acid/creatinine ratio, concentration of neuron specific enolase (NSE), interleukin 6 (IL6), interleukin-$1{\beta}$ ($IL-1{\beta}$), and glial cell derived neurotrophic factor (GDNF) in serum and cerebrospinal fluid on day 1 and 7. Results : There were no significant differences in the numbers of the nucleated RBC, urinary uric acid/creatinine ratio, concentration of creatine kinase between the transplanted infants and controls. But the nucleated RBC is more likely to be rapidly discharged in the transplanted group. In the transplanted group, the concentrations of IL6, $IL-1{\beta}$, and GDNF were no significant difference between day 1 and 7, although GDNF seemed to be elevated. Serum NSE concentration was significantly elevated after transplantation, but not in CSF. Conclusion : It is suggested that autologous umbilical cord blood transplantation in preterm very low birth weight infant is safe to apply clinical practice. Long term follow up study should be needed to evaluate the potential therapeutic effect of umbilical cord blood transplantation for neuroprotection.

목 적 : 제대혈액 내 줄기세포 자가 이식이 극소저출생 미숙아의 신경학적 손상을 방지할 수 있는지 알아보고자 하였다. 방 법 : 출생체중 1,500 g 미만, 제태연령 32주 이하인 미숙아 26명을 대상으로 하였다. 환자의 제대혈에서 단핵구만 분리한 후 생후 24-48시간 사이에 단핵구로서 평균 $5.87{\times}10^7/kg$개를 정맥주사 하였다. 평가 변수들로서는 저산소성-허혈성 뇌증의 예측 지표로 사용되는 유핵 적혈구수, 소변내의 uric acid/creatinine 비와 NSE, IL-6, $IL-1{\beta}$ 등과 신경세포 보호 작용이 있는 것으로 알려진 GDNF의 농도를 혈청 및 뇌척수액에서 측정하였다. 임상적으로는 생후 1개월의 두위 증가 정도와 함께 뇌 병변, 기관지폐이형성증, 미숙아 망막증, 괴사성 장염 등의 발생 정도를 평가하였다. 결 과 : 1) 소변내 uric acid/ceartinine 비는 줄기세포 자가 이식군과 대조군 사이에 차이가 없었으나 유핵 적혈구수의 감소는 줄기세포 이식군에서 빠르게 감소하는 경향을 보였다. 2) 제대혈 자가 줄기 이식 전후에 시행한 혈청 NSE와 IL-6는 생후 제 7일에 의미 있게 감소하였으나 뇌척수액에서는 통계학적인 의미를 보이지 않았다. 혈청 $IL-1{\beta}$는 생후 제 7일에 감소하고, 혈청 GDNF 농도는 줄기세포 이식 후 증가하는 경향을 보였으나 모두 통계학적인 의미는 없었고 뇌척수액에서도 차이를 보이지 않았다. 3) 생후 1개월에서의 두위 성장(2 cm 이상)은 줄기세포 이식군에서 11명(46%), 대조군은 3명(27%)이었다. 4) 생후 1개월에서의 뇌병변은 줄기세포 이식군 24명 중 3명에서 뇌실주위 연화증이 발생하였고 그 중 1명은 뇌실확장증을 동반하였으며 대조군에서는 11명 중 2명에서 뇌실주위 백질연화증과 뇌실확장증이 발생하였다. 5) 줄기세포 이식군에서 기관지폐이형성증 및 괴사성 장염이 각각 1명씩 발생하였고 대조군에서는 미숙아 망막증이 2명에서 발생하였다. 6) 줄기세포 이식군에서 신생아호흡곤란 증후군과 연관된 패혈증으로 2명이 사망하였으며 제대혈 줄기세포 자가 이식과는 연관관계가 없었다. 결 론 : 극소 저출생체중 미숙아에서 제대혈 자가이식술은 윤리적인 문제없이 쉽게 시행할 수 있는 안전하고 실용적인 신경손상 예방 및 치료법으로 기대된다. 향후 장기적인 신경학적 추적 검사 및 비침습적이며 정교한 평가 변수 확립이 필요하다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. Himmelmann K, Hagberg G, Beckung E, Hagberg B, Uvebrant P. The changing panorama of cerebral palsy in sweden. IX. Prevalence and origin in the birth-year period 1995-1998. Acta Paediatr 2005;94:287-94 https://doi.org/10.1111/j.1651-2227.2005.tb03071.x
  2. Mayani H, Lansdorp PM. Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells. Stem Cells 1998;16:153-65 https://doi.org/10.1002/stem.160153
  3. Saporta S, Kim JJ, Willing AE, Fu ES, Davis CD, Sanberg PR. Human umbilical cord blood stem cells infusion in spinal cord injury: Engraftment and beneficial influence on behavior. J Hematother Stem Cell Res 2003;12:271-8 https://doi.org/10.1089/152581603322023007
  4. Newman MB, Davis CD, Borlongan CV, Emerich D, Sanberg PR. Transplantation of human umbilical cord blood cells in the repair of CNS diseases. Expert Opin Biol Ther 2004;4: 121-30 https://doi.org/10.1517/14712598.4.2.121
  5. Vendrame M, Cassady J, Newcomb J, Butler T, Pennypacker KR, Zigova T, et al. Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke 2004; 35:2390-5 https://doi.org/10.1161/01.STR.0000141681.06735.9b
  6. Grether JK, Cummins SK, Nelson KB. The California cerebral palsy project. Paediatr Perinat Epidemiol 1992;6:339-51 https://doi.org/10.1111/j.1365-3016.1992.tb00774.x
  7. Hagberg B, Hagberg G, Beckung E, Uvebrant P. Changing panorama of cerebral palsy in sweden. VIII. Prevalence and origin in the birth year period 1991-94. Acta Paediatr 2001; 90:271-7
  8. Volpe JJ. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 2001;50:553-62 https://doi.org/10.1203/00006450-200111000-00003
  9. Gunes T, Ozturk MA, Koklu E, Kose K, Gunes I. Effect of allopurinol supplementation on nitric oxide levels in asphyxiated newborns. Pediatr Neurol 2007;36:17-24 https://doi.org/10.1016/j.pediatrneurol.2006.08.005
  10. Edwards AD, Azzopardi DV. Therapeutic hypothermia following perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed 2006;91:F127-31 https://doi.org/10.1136/adc.2005.071787
  11. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 2001; 32:2682-8 https://doi.org/10.1161/hs1101.098367
  12. Vendrame M, Cassady J, Newcomb J, Butler T, Pennypacker KR, Zigova T, et al. Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke 2004; 35:2390-5 https://doi.org/10.1161/01.STR.0000141681.06735.9b
  13. Caplan AI, Bruder SP. Mesenchymal stem cells: Building blocks for molecular medicine in the 21st century. Trends Mol Med 2001;7:259-64 https://doi.org/10.1016/S1471-4914(01)02016-0
  14. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 1999;96:10711-6 https://doi.org/10.1073/pnas.96.19.10711
  15. Abe K. Therapeutic potential of neurotrophic factors and neural stem cells against ischemic brain injury. J Cereb Blood Flow Metab 2000;20:1393-408 https://doi.org/10.1097/00004647-200010000-00001
  16. Johansson CB. Mechanism of stem cells in the central nervous system. J Cell Physiol 2003;196:409-18 https://doi.org/10.1002/jcp.10293
  17. Broxmeyer HE, Gluckman E, Auerbach A, Douglas GW, Friedman H, Cooper S, et al. Human umbilical cord blood: A clinically useful source of transplantable hematopoietic stem/ progenitor cells. Int J Cell Cloning 1990;8(Suppl 1):89-91
  18. Lansdorp PM, Dragowska W, Mayani H. Ontogeny-related changes in proliferative potential of human hematopoietic cells. J Exp Med 1993;178:787-91 https://doi.org/10.1084/jem.178.3.787
  19. Voermans C, Gerritsen WR, von dem Borne AE, van der Schoot CE. Increased migration of cord blood-derived CD34+ cells, as compared to bone marrow and mobilized peripheral blood CD34+ cells across uncoated or fibronectin-coated filters. Exp Hematol 1999;27:1806-14 https://doi.org/10.1016/S0301-472X(99)00113-7
  20. Hao QL, Shah AJ, Thiemann FT, Smogorzewska EM, Crooks GM. A functional comparison of CD34 + CD38- cells in cord blood and bone marrow. Blood 1995;86:3745-53
  21. Ende N, Chen R, Reddi AS. Effect of human umbilical cord blood cells on glycemia and insulitis in type 1 diabetic mice. Biochem Biophys Res Commun 2004;3253:665-9
  22. Ghosh B, Mittal S, Kumar S, Dadhwal V. Prediction of perinatal asphyxia with nucleated red blood cells in cord blood of newborns. Int J Gynaecol Obstet 2003;81:267-71 https://doi.org/10.1016/S0020-7292(03)00124-3
  23. Chen HJ, Yau KI, Tsai KS. Urinary uric acid/creatinine ratio as an additional marker of perinatal asphyxia. J Formos Med Assoc 2000;99:771-4
  24. Celtik C, Acunas B, Oner N, Pala O. Neuron-specific enolase as a marker of the severity and outcome of hypoxic ischemic encephalopathy. Brain Dev 2004:26:398-402 https://doi.org/10.1016/j.braindev.2003.12.007
  25. Tekgul H, Yalaz M, Kutukculer N, Ozbek S, Kose T, Akisu M, et al. Value of biochemical markers for outcome in term infants with asphyxia. Pediatr Neurol 2004;31:326-32 https://doi.org/10.1016/j.pediatrneurol.2004.05.004
  26. Aly H, Khashaba MT, El-Ayouty M, El-Sayed O, Hasanein BM. IL-1beta, IL-6 and TNF-alpha and outcomes of neonatal hypoxic ischemic encephalopathy. Brain Dev 2006;28: 178-82 https://doi.org/10.1016/j.braindev.2005.06.006
  27. Harvey BK, Chang CF, Chiang YH, Bowers WJ, Morales M, Hoffer BJ, et al. HSV amplicon delivery of glial cell line-derived neurotrophic factor is neuroprotective against ischemic injury. Exp Neurol 2003;183:47-55 https://doi.org/10.1016/S0014-4886(03)00080-3