DOI QR코드

DOI QR Code

Engineering lacZ Reporter Gene into an ephA8 Bacterial Artificial Chromosome Using a Highly Efficient Bacterial Recombination System

  • Kim, Yu-Jin (Department of Biological Science, Sookmyung Women's University) ;
  • Song, Eun-Sook (Department of Biological Science, Sookmyung Women's University) ;
  • Choi, Soon-Young (Department of Biological Science, Sookmyung Women's University) ;
  • Park, Soo-Chul (Department of Biological Science, Sookmyung Women's University)
  • Published : 2007.09.30

Abstract

In this report, we describe an optimized method for generation of ephA8 BAC transgenic mice expressing the lacZ reporter gene under ephA8 regulatory sequences. First, we constructed a targeting vector that carries a 1.2 kb ephA8 DNA upstream of its first exon, a lacZ expression cassette, a kanamycin cassette, and a 0.7 kb ephA8 DNA downstream of its first exon. Second, the targeting vector was electroporated into cells containing the ephA8 BAC and pKOBEGA, in which recombinases induce a homologous recombination between the ephA8 BAC DNA and the targeting vector. Third, the FLP plasmid expressing the Flipase was electroporated into these bacteria to eliminate a kanamycin cassette from the recombinant BAC DNA. The appropriate structures of the modified ephA8 BAC DNA were confirmed by Southern analysis. Finally, BAC transgenic mouse embryos were generated by pronuclear injection of the recombinant BAC DNA. Whole mount X-gal staining revealed that the lacZ reporter expression is restricted to the anterior region of the developing midbrain in each transgenic embryo. These results indicate that the ephA8 BAC DNA contains most, if not all, regulatory sequences to direct temporal and spatial expression of the lacZ gene in vivo.

Keywords

References

  1. Abe, K., Hazama, M., Katoh, H., Yamamura, K. and Suzuki, M. (2004) Establishment of an efficient BAC transgenesis protocol and its application to functional characterization of the mouse Brachyury locus. Exp. Anim. 53, 311-320. https://doi.org/10.1538/expanim.53.311
  2. Buchholz, F., Angrand, P. O. and Stewart, A. F. (1996) A simple assay to determine the functionality of Cre or FLP recombination targets in genomic manipulation constructs. Nucleic Acids Res. 24, 3118-3119. https://doi.org/10.1093/nar/24.15.3118
  3. Chaveroche, M. K., Ghigo, J. M. and d'Enfert, C. (2000) A rapidmethod for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res. 28, 97. https://doi.org/10.1093/nar/28.1.97
  4. Copeland, N. G., Jenkins, N. A. and Court, D. L. (2001) Recombineering: a powerful new tool for mouse functional genomics. Nat. Rev. Genet. 2, 769-779.
  5. Court, D. L., Sawitzke, J. A. and Thomason, L. C. (2002) Genetic engineering using homologous recombination. Annu. Rev. Genet. 36, 361-388. https://doi.org/10.1146/annurev.genet.36.061102.093104
  6. Datsenko, K. A. and Wanner, B. L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640-6645. https://doi.org/10.1073/pnas.120163297
  7. Depaepe, V., Suarez-Gonzalez, N., Dufour, A., Passante, L., Gorski, J. A., Jones, K. R., Ledent, C. and Vanderhaeghen, P. (2005) Ephrin signalling controls brain size by regulating apoptosis of neural progenitors. Nature 435, 1244-1250. https://doi.org/10.1038/nature03651
  8. Festenstein, R., Tolaini, M., Corbella, P., Mamalaki, C., Parrington, J., Fox, M., Miliou, A., Jones, M. and Kioussis, D. (1996) Locus control region function and heterochromatininduced position effect variegation. Science 271, 1123-1125. https://doi.org/10.1126/science.271.5252.1123
  9. Frengen, E., Weichenhan, D., Zhao, B., Osoegawa, K., van Geel, M. and de Jong, P. J. (1999) A modular, positive selection bacterial artificial chromosome vector with multiple cloning sites. Genomics 58, 250-253. https://doi.org/10.1006/geno.1998.5693
  10. Gong, S., Yang, X. W., Li, C. and Heintz, N. (2002) Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kgamma origin of replication. Genome Res. 12, 1992-1998. https://doi.org/10.1101/gr.476202
  11. Gong, S., Zheng, C., Doughty, M. L., Losos, K., Didkovsky, N., Schambra, U. B., Nowak, N. J. and Heintz, N. (2001) BAC to the future: the use of bac transgenic mice for neuroscience research. Nat. Rev. Neurosci. 2, 861-870. https://doi.org/10.1038/35104049
  12. Jeong, Y., El-Jaick, K., Roessler, E., Muenke, M. and Epstein, D. J. (2006) A functional screen for sonic hedgehog regulatory elements across a 1 Mb interval identifies long-range ventral forebrain enhancers. Development 133, 761-772. https://doi.org/10.1242/dev.02239
  13. Joyner, A., Leblanc, G., Hatten, M. E. and Heintz, N. (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917-925. https://doi.org/10.1038/nature02033
  14. Joyner, A. L. (1993) Gene targeting: a practical approach. Oxford University Press, Oxford, New York, USA.
  15. Kim, J. and Lauderdale, J. D. (2006) Analysis of Pax6 expression using a BAC transgene reveals the presence of a paired-less isoform of Pax6 in the eye and olfactory bulb. Dev. Biol. 292, 486-505. https://doi.org/10.1016/j.ydbio.2005.12.041
  16. Kim, U. J., Birren, B. W., Slepak, T., Mancino, V., Boysen, C., Kang, H. L., Simon, M. I. and Shizuya, H. (1996) Construction and characterization of a human bacterial artificial chromosome library. Genomics 34, 213-218. https://doi.org/10.1006/geno.1996.0268
  17. Koo, J., Shim, S., Gu, C., Yoo, O. and Park, S. (2003) Identification of an enhancer region in the mouse ephA8 locus directing expression to the anterior region of the dorsal mesencephalon. Dev. Dyn. 226, 596-603. https://doi.org/10.1002/dvdy.10253
  18. Lee, E. C., Yu, D., Martinez de Velasco, J., Tessarollo, L., Swing, D. A., Court, D. L., Jenkins, N. A. and Copeland, N. G. (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73, 56-65. https://doi.org/10.1006/geno.2000.6451
  19. Liu, P., Jenkins, N. A. and Copeland, N. G. (2003) A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13, 476-484. https://doi.org/10.1101/gr.749203
  20. Metcalf, W.W., Jiang, W., Daniels, L. L., Kim, S. K., Haldimann, A. and Wanner, B. L. (1996) Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35, 1-13. https://doi.org/10.1006/plas.1996.0001
  21. Muyrers, J. P., Zhang, Y., Testa, G. and Stewart, A. F. (1999) Rapid modification of bacterial artificial chromosomes by ETrecombination. Nucleic Acids Res. 27, 1555-1557. https://doi.org/10.1093/nar/27.6.1555
  22. Orford, M., Nefedov, M., Vadolas, J., Zaibak, F., Williamson, R. and Ioannou, P. A. (2000) Engineering EGFP reporter constructs into a 200 kb human beta-globin BAC clone using GET Recombination. Nucleic Acids Res. 28, 84. https://doi.org/10.1093/nar/28.18.e84
  23. Park, S., Frisen, J. and Barbacid, M. (1997) Aberrant axonal projections in mice lacking EphA8 (Eek) tyrosine protein kinase receptors. EMBO J. 16, 3106-3114. https://doi.org/10.1093/emboj/16.11.3106
  24. Sambrook, J. and Russell, D. W. (2001) Molecular cloning: A laboratory manual, 2nd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.
  25. Shizuya, H., Birren, B., Kim, U. J., Mancino, V., Slepak, T., Tachiiri, Y. and Simon, M. (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA 89, 8794-8797. https://doi.org/10.1073/pnas.89.18.8794
  26. Sparwasser, T., Gong, S., Li, J. Y. and Eberl, G. (2004) General method for the modification of different BAC types and the rapid generation of BAC transgenic mice. Genesis 38, 39-50. https://doi.org/10.1002/gene.10249
  27. Swaminathan, S., Ellis, H. M., Waters, L. S., Yu, D., Lee, E. C., Court, D. L. and Sharan, S. K. (2001) Rapid engineering of bacterial artificial chromosomes using oligonucleotides. Genesis 29, 14-21. https://doi.org/10.1002/1526-968X(200101)29:1<14::AID-GENE1001>3.0.CO;2-X
  28. Tao, Q. and Zhang, H. B. (1998) Cloning and stable maintenance of DNA fragments over 300 kb in Escherichia coli with conventional plasmid-based vectors. Nucleic Acids Res. 26, 4901-4909. https://doi.org/10.1093/nar/26.21.4901
  29. Yang, X. W., Model, P. and Heintz, N. (1997) Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat. Biotechnol. 15, 859-865. https://doi.org/10.1038/nbt0997-859
  30. Yu, D., Ellis, H. M., Lee, E. C., Jenkins, N. A., Copeland, N. G. and Court, D. L. (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 5978-5983. https://doi.org/10.1073/pnas.100127597
  31. Zhang, P., Li, M. Z. and Elledge, S. J. (2002) Towards genetic genome projects: genomic library screening and gene-targeting vector construction in a single step. Nat. Genet. 30, 31-39. https://doi.org/10.1038/ng797
  32. Zhang, Y., Buchholz, F., Muyrers, J. P. and Stewart, A. F. (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123-128. https://doi.org/10.1038/2417
  33. Zhang, Y., Muyrers, J. P., Testa, G. and Stewart, A. F. (2000) DNA cloning by homologous recombination in Escherichia coli. Nat. Biotechnol. 18, 1314-1317. https://doi.org/10.1038/82449

Cited by

  1. Expression of EphA8-Fc in transgenic mouse embryos induces apoptosis of neural epithelial cells during brain development vol.73, pp.9, 2013, https://doi.org/10.1002/dneu.22092
  2. In Vivo Expression of EphrinA5-Fc in Mice Results in Cephalic Neural Crest Agenesis and Craniofacial Abnormalities vol.37, pp.1, 2014, https://doi.org/10.14348/molcells.2014.2279
  3. In Vivo Expression of the PTB-deleted Odin Mutant Results in Hydrocephalus vol.38, pp.5, 2015, https://doi.org/10.14348/molcells.2015.2288
  4. Identification of the 187 bp EphA7 Genomic DNA as the Dorsal Midline-Specific Enhancer of the Diencephalon and Mesencephalon vol.38, pp.11, 2015, https://doi.org/10.14348/molcells.2015.0221
  5. Ectopic Expression of Ephrin-A5 Under the EphA8 Promoter at the Anterior Region of the Superior Colliculus vol.19, pp.1, 2010, https://doi.org/10.5607/en.2010.19.1.49
  6. Endocytosis of EphA receptors is essential for the proper development of the retinocollicular topographic map vol.30, pp.8, 2011, https://doi.org/10.1038/emboj.2011.44
  7. EphA/ephrin-A signaling is critically involved in region-specific apoptosis during early brain development vol.20, pp.1, 2013, https://doi.org/10.1038/cdd.2012.121
  8. Proper closure of the optic fissure requires ephrin A5-EphB2-JNK signaling vol.143, pp.3, 2016, https://doi.org/10.1242/dev.129478