Effects of Olanzapine on Gene Expression Changes in MK-801-induced Neurotoxicity Using a High-density DNA Microarray

  • 발행 : 2007.12.31

초록

Although the etiology of schizophrenia is known to be linked with the disturbance of glutamatergic and dopaminergic neurotransmission, little is known about the relationship between gene expression and the disease process. To identify genes related to abnormalities in glutamatergic and dopaminergic function, we investigated the effects of olanzapine in the changes of mRNA levels in the animal model of schizophrenia, using a high-density DNA microarray. Olanzapine (3.0 mg/kg, i.p.) significantly reduced hyperlocomotive activities, which was induced by MK-801 (1.0 mg/kg, i.p.). We identified that the expression of 719 genes were significantly altered more than two folds in the prefrontal cortex of the rats treated with MK-801. We selected 15 genes out of them by the changes of the expression pattern in the treatment of Olanzapine and/or MK801 for the further confirmation in RT-PCR. The administration of MK-801 increased the expression of 7 genes (NOS3, Hspb1, Hspa1a, CRH, Serpine1, Igfbp6, Snf1lk) and decreased the expression of 1 gene (Aldh1a2), which was attenuated by olanzapine. One gene (Prss12) was up-regulated after olanzapine treatment although it did not show the significant changes after MK-801 treatment. These results showed that antipsychotic drug, such as olanzapine, may alter the gene expression patterns, which were accompanied by MK-801-induced psychosis. Our results also provide us high-density DNA microarray technology could be potential approaches to find the candidate molecules for the therapeutics and also for the early diagnosis of psychiatric diseases.

키워드

참고문헌

  1. Goff, D. C. & Coyle, J. T. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 158:1367-1377 (2001) https://doi.org/10.1176/appi.ajp.158.9.1367
  2. Coyle, J. T. & Tsai, G. NMDA receptor function, neuroplasticity, and the pathophysiology of schizophrenia. Int Rev Neurobiol 59:491-515 (2004) https://doi.org/10.1016/S0074-7742(04)59019-0
  3. McCullumsmith, R. E., Clinton, S. M. & Meador- Woodruff, J. H. Schizophrenia as a disorder of neuroplasticity. Int Rev Neurobiol 59:19-45 (2004) https://doi.org/10.1016/S0074-7742(04)59002-5
  4. Carlsson, A. et al. Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237-260 (2001) https://doi.org/10.1146/annurev.pharmtox.41.1.237
  5. Laruelle, M. et al. Mechanism of action of antipsychotic drugs: from dopamine D 2 receptor antagonism to glutamate NMDA facilitation. Clin Ther 27:s16-s24 (2005) https://doi.org/10.1016/j.clinthera.2005.07.017
  6. Javitt, D. C. Gultamate and schizophrenia: phencyclidine, N-methyl-D-Aspartate receptors, and dopamineglutamate interactions. Int Rev Neurobiol 78:69-108 (2007) https://doi.org/10.1016/S0074-7742(06)78003-5
  7. Ellison, G. The N-methyl-d-aspartate antagonists phencyclidine, ketamine and dizocilpine as both behavioral and anatomical models of the dementias. Brain Res Brain Res Rev 20:250-267 (1995) https://doi.org/10.1016/0165-0173(94)00014-G
  8. Javitt, D. C. & Zukin, S. R. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiat 148:1301-1308 (1991) https://doi.org/10.1176/ajp.148.10.1301
  9. Paulson, L. et al. Comparative proteome analysis of thalamus in MK-801-treated rats. Proteomics 4:819-825 (2004) https://doi.org/10.1002/pmic.200300622
  10. Marcotte, E. R., Pearson, D. M. & Srivastava, L. K. Animal models of schizophrenia: a critical review. J Psychiatry Neurosci 26:395-410 (2001)
  11. Farber, N. B., Foster, J., Duhan, N. L. & Olney, J. W. Olanzapine and fluperlapine mimic clozapine in preventing MK-801 neurotoxicity. Schizophr Res 21:33-37 (1996) https://doi.org/10.1016/0920-9964(96)00024-2
  12. Carlsson, M. & Svensson, A. Interfering with glutamatergic neurotransmission by means of NMDA antagonist administration discloses the locomotor stimulatory potential of other transmitter systems. Pharmacol Biochem Behav 36:45-50 (1990) https://doi.org/10.1016/0091-3057(90)90123-Y
  13. al-Amin, H. A. & Schwarzkopf, S. B. Effects of the PCP analog dizocilpine on sensory gating: potential relevance to clinical subtypes of schizophrenia. Biol Psychiatry 40:744-754 (1996) https://doi.org/10.1016/0006-3223(95)00485-8
  14. Matsuoka, T. et al. NC-1900, an arginine-vasopressin analogue, ameliorates social behavior deficits and hyperlocomotion in MK-801-treated rats: Therapeutic implications for schizophrenia. Brain Research 1053: 131-136 (2005) https://doi.org/10.1016/j.brainres.2005.06.035
  15. Wolf, M. E. & Khansa, M. R. Repeated administration of MK-801 produces sensitization to its own locomotor stimulant effects but blocks sensitization to amphetamine. Brain Res 562:164-168 (1991) https://doi.org/10.1016/0006-8993(91)91202-C
  16. Sams-Dodd, F. Distinct effects of d-amphetamine and phencyclidine on the social behaviour of rats. Behav Pharmacol 6:55-65 (1995)
  17. Li, Z., Kim, C. H., Ichikawa, J. & Meltzer, H. Y. Effect of repeated administration of phencyclidine on spatial performance in an eight arm radial maze with delay in rats and mice. Pharmacol Biochem Behav 75:335-340 (2003) https://doi.org/10.1016/S0091-3057(03)00085-6
  18. Schulz, B., Fendt, M., Pedersen, V. & Koch, M. Sensitization of prepulse inhibition deficits by repeated administration of dizocilpine. Psychopharmacol (Berlin) 156:177-181 (2001) https://doi.org/10.1007/s002130100776
  19. Frankenburg, F. R. Choices in antipsychotic therapy in schizophrenia. Harv Rev Psychiat 6:241-249 (1999) https://doi.org/10.3109/10673229909000336
  20. Kane, J. M., Leucht, S., Carpenter, D. & Docherty, J. P. Expert consensus guideline series. Optimizing pharmacologic treatment of psychotic disorders. Introduction: methods, commentary, and summary. J Clin Psychiat 64:5-19 (2003) https://doi.org/10.4088/JCP.v64n0301
  21. Hyman, S. E. & Nestler, E. J. Initiation and adaptation: a paradigm for understanding psychotropic drug action. Am J Psychiat 153:151-162 (1996) https://doi.org/10.1176/ajp.153.2.151
  22. Dragunow, M. et al. D2 dopamine receptor antagonists induce fos and related proteins in rat striatal neurons. Neuroscience 37:287-294 (1990) https://doi.org/10.1016/0306-4522(90)90399-O
  23. Konradi, C. & Heckers, S. Antipsychotic drugs and neuroplasticity: Insights into the treatment and neurobiology of schizophrenia. Biol Psychiatry 50:729-742 (2001) https://doi.org/10.1016/S0006-3223(01)01267-7
  24. MacDonald, M. L., Eaton, M. E., Dudman, J. T. & Konradi, C. Antipsychotic drugs elevate mRNA levels of presynaptic proteins in the frontal cortex of the rat. Biol Psychiat 57:1041-1051 (2005) https://doi.org/10.1016/j.biopsych.2005.01.022
  25. Fatemi, S. H. et al. Chronic olanzapine treatment causes differential expression of genes in frontal cortex of rats as revealed by DNA microarray technique. Neuropsychopharmacol 31:1888-1899 (2006) https://doi.org/10.1038/sj.npp.1301002
  26. Bymaster, F. P. et al. In vitro and in vivo biochemistry of olanzapine: a novel, atypical antipsychotic drug. J Clin Psychiat 58:28S-36S (1997)
  27. Tarazi, F. I., Baldessarini, R. J., Kula, N. S. & Zhang, K. Long-term effects of olanzapine, risperidone, and quetiapine on ionotropic glutamate receptor types: Implications for antipsychotic drug treatment. J Pharmacol Exp Ther 306:1145-1151 (2003) https://doi.org/10.1124/jpet.103.052597
  28. Marcotte, E. R., Srivastava, L. K. & Quirion, R. cDNA microarray and proteomic approaches in the study of brain diseases: focus on schizophrenia and Alzheimer's disease. Pharmacol Ther 100:63-74 (2003) https://doi.org/10.1016/S0163-7258(03)00086-X
  29. Gardonic, F. & Luca, M. D. New targets for pharmaceutical intervention in the glutamatergic synapse. Eur J Pharmacol 545:2-10 (2006) https://doi.org/10.1016/j.ejphar.2006.06.022
  30. Wang, J. Q., Fibuch, E. E. & Mao, L. Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem 100:1-11 (2007) https://doi.org/10.1111/j.1471-4159.2006.04208.x
  31. Svensson, T. H. Dysfunctional brain dopamine systems induced by psychotomimetic NMDA-receptor antagonists and the effects of antipsychotic drugs. Brain Res Rev 31:320-329 (2000) https://doi.org/10.1016/S0165-0173(99)00048-X
  32. Chong, V. Z., Young, L. T. & Mishra, R. K. cDNA array reveals differential gene expression following chronic neuroleptic administration: implications of synapsin II in haloperidol treatment. J Neurochem 82: 1533-1539 (2002) https://doi.org/10.1046/j.1471-4159.2002.01104.x
  33. Thomas, E. A. et al. Antipsychotic drug treatment alters expression of mRNAs encoding lipid metabolism- related proteins. Mol Psychiat 8:983-993 (2003) https://doi.org/10.1038/sj.mp.4001425
  34. Liu, C., Gilmont, R. R., Benndorf, R. & Welsh, M. J. Identification and characterization of a novel protein from sertoli cells, PASS1, that associates with mammalian small stress protein hsp27. J Biol Chem 275: 18724-18731 (2000) https://doi.org/10.1074/jbc.M001981200
  35. Whitlock, N. A. et al. Heat shock protein 27 delays Ca2_-induced cell death in a caspase-dependent and - independent manner in rat retinal ganglion cells. Invest Ophthalmol Vis Sci 46:1085-1091 (2005) https://doi.org/10.1167/iovs.04-0042
  36. Arion, D. et al. Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia. Biol Psychiat 62:711-721 (2007) https://doi.org/10.1016/j.biopsych.2006.12.021
  37. Liou, Y. J. et al. Haplotype analysis of endothelial nitric oxide synthase (NOS3) genetic variants and tardive dyskinesia in patients with schizophrenia. Pharmacogenet Genomics 16:151-157 (2006)
  38. Infante, C. et al. Expression of nitric oxide synthase isoforms in the dorsal horn of monoarthritic rats: effects of competitive and uncompetitive N-methyl- D-aspartate antagonists. Arthritis Res Ther 9:R53-R60 (2007) https://doi.org/10.1186/ar2208
  39. Khan, S., Milot, M., Lecompte-Collin, J. & Plamondon, H. Time-dependent changes in CRH concentrations and release in discrete brain regions following global ischemia: effects of MK-801 pretreatment. Brain Res 1016:48-57 (2004) https://doi.org/10.1016/j.brainres.2004.04.062
  40. Yuan, J., Jia, R. & Bao, Y. Aldosterone up-regulates production of plasminogen activator inhibitor-1 by renal mesangial cells. J Biochem Mol Biol 40:180-188 (2007) https://doi.org/10.5483/BMBRep.2007.40.2.180
  41. Kuhl, N. M., Hoekstra, D., Vries, H. D. & Keyser, J. D. Insulin-like growth factor-binding protein 6 inhibits survival and differentiation of rat oligodendrocyte precursor cells. Glia 44:91-101 (2003) https://doi.org/10.1002/glia.10263
  42. Ghaleb, A. M. et al. Kruppel-like factor 4 exhibits antiapoptotic activity following $\gamma$-radiation-induced DNA damage. Oncogene 26:2365-2373 (2007) https://doi.org/10.1038/sj.onc.1210022
  43. Wang, Z. N. et al. Cloning of a novel kinase (SIK) of the SNF1/AMPK family from high salt diet-treated rat adrenal. FEBS Lett 453:135-139 (1999) https://doi.org/10.1016/S0014-5793(99)00708-5
  44. Hedbacker, K., Hong, S. P. & Carlson, M. Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase. Mol Cell Biol 24: 8255-8263 (2004) https://doi.org/10.1128/MCB.24.18.8255-8263.2004
  45. Ogura, Y. T. et al. Postnatal changes in gene expression of retinal dehydrogenase and retinoid receptors in liver of rats. Life Sci 74:1519-1528 (2004) https://doi.org/10.1016/j.lfs.2003.08.020
  46. Mitsuia, S., Yamaguchib, N., Osakoa, Y. & Yuria, K. Enzymatic properties and localization of motopsin (PRSS12), a protease whose absence causes mental retardation. Brain Res 1136:1-12 (2007) https://doi.org/10.1016/j.brainres.2006.11.094
  47. Kamphuis, W., Dijk, F., van Soest, S. & Bergen, A. A. B. Global gene expression profiling of ischemic preconditioning in the rat retina. Molecular Vision 13:1020-1030 (2007)
  48. Fumagalli, F. et al. Effect of antipsychotic drugs on brain-derived neurotrophic factor expression under reduced N-methyl-D-aspartate receptor activity. J Neurosci Res 72:622-628 (2003) https://doi.org/10.1002/jnr.10609
  49. Kusumi, I. et al. Differential effects of subchronic treatments with atypical antipsychotic drugs on dopamine D2 and serotonin 5-HT2A receptors in the rat brain. J Neural Transm 107:295-302 (2000) https://doi.org/10.1007/s007020050024
  50. Chang, C. C. et al. Methimazole alleviates hepatic encephalopathy in bile-duct ligated cirrhotic rats. J Chin Med Assoc 69:563-568 (2006) https://doi.org/10.1016/S1726-4901(09)70330-2