DOI QR코드

DOI QR Code

Compound K (CK) Rich Fractions from Korean Red Ginseng Inhibit Toll-like Receptor (TLR) 4- or TLR9-mediated Mitogen-activated Protein Kinases Activation and Pro-inflammatory Responses in Murine Macrophages

고려홍삼으로부터 분리한 compound K 함유분획에 의한 대식세포의 toll-like receptor-의존성 신호전달로 활성조절 분석

  • Yang, Chul-Su (Department of Microbiology, College of Medicine, Chungnam National University) ;
  • Ko, Sung-Ryong (Ginseng Research Group, KT&G Central Research Institute) ;
  • Cho, Byung-Goo (Ginseng Research Group, KT&G Central Research Institute) ;
  • Lee, Ji-Yeon (Department of Microbiology, College of Medicine, Chungnam National University) ;
  • Kim, Ki-Hye (Department of Microbiology, College of Medicine, Chungnam National University) ;
  • Shin, Dong-Min (Department of Microbiology, College of Medicine, Chungnam National University) ;
  • Yuk, Jae-Min (Department of Microbiology, College of Medicine, Chungnam National University) ;
  • Sohn, Hyun-Joo (Ginseng Research Group, KT&G Central Research Institute) ;
  • Kim, Young-Sook (Ginseng Research Group, KT&G Central Research Institute) ;
  • Wee, Jae-Joon (Ginseng Research Group, KT&G Central Research Institute) ;
  • Do, Jae-Ho (Ginseng Research Group, KT&G Central Research Institute) ;
  • Jo, Eun-Kyeong (Department of Microbiology, College of Medicine, Chungnam National University)
  • 양철수 (충남대학교 의과대학 미생물학교실) ;
  • 고성룡 (KT&G 중앙연구소) ;
  • 조병구 (KT&G 중앙연구소) ;
  • 이지연 (충남대학교 의과대학 미생물학교실) ;
  • 김기혜 (충남대학교 의과대학 미생물학교실) ;
  • 신동민 (충남대학교 의과대학 미생물학교실) ;
  • 육재민 (충남대학교 의과대학 미생물학교실) ;
  • 손현수 (KT&G 중앙연구소) ;
  • 김영숙 (KT&G 중앙연구소) ;
  • 위재준 (KT&G 중앙연구소) ;
  • 도재호 (KT&G 중앙연구소) ;
  • 조은경 (충남대학교 의과대학 미생물학교실)
  • Published : 2007.12.31

Abstract

Compound K (CK), a protopanaxadiol ginsenoside metabolite, was previously shown to have immunomodulatory effects. In this study, we isolated the CK rich fractions (CKRF) from Korean Red Ginseng and investigated the regulation of CKRF-mediated inflammatory signaling during Toll-like receptor (TLR)-mediated cellular activation. Among various TLR ligands, CKRF considerably abrogated TLR4- or TLR9-induced inflammatory signaling. Both LPS and CpG-containing oligodeoxynucleotides (CpG-ODN) stimulation rapidly activates mitogen-activated protein kinases [MAPKs; extracellular signal-regulated kinases 1/2 and p38], NF-${\kappa}B$, and expression of pro-inflammatory cytokines tumor necrosis factor-${\alpha}$, and interleukin-6 in murine bone marrow-derived macrophages (BMDMs) in a time- and dose-dependent manner. Of interest, pre-treatment of CKRF in either LPS/TLR4- or CpG-ODN/TLR9-stimulated macrophages substantially attenuated the LPS-induced inflammatory cytokine production and mRNA expressions, as well as MAPK and NF-${\kappa}B$ activation. To our knowledge, this is the first description of the inhibitory roles for CKRF in TLR4- or TLR9-associated signaling in BMDMs. Collectively, these results demonstrate that CKRF specifically modulates distinct TLR4 and TLR9-mediated inflammatory responses, and further studies are urgently needed for their in vivo roles for potential therapeutic uses, such as in systemic inflammatory syndromes.

본 연구에서는 고려홍삼으로부터 새로 분리한 CK 함유분획을 이용하여 마우스 대식세포에 대한 선천면역반응 조절에 미치는 영향을 조사하였다. 본 연구에서 사용된 농도의 CK 함유분획에서는 세포독성 효과가 관찰되지 않았으며 CK함유 분획의 전처리에 의하여 그람음성세균의 LPS, 또는 CpG-ODN에 의해 유도되는 NF-${\kappa}B$와 MAPK 활성 및 전염증성 사이토카인, NO의 분비가 TLR4 및 TLR9 특이적으로 억제되었다. 이와 같은 결과는 CK 함유분획이 TLR4을 매개로하는 염증반응뿐만 아니라 TLR9을 통한 염증반응에도 영향을 미치는 것으로 해석된다. 따라서 앞으로 CK 함유 분획에 포함된 개별 사포닌 등 시료 성분에 대한 면밀한 분석, 그리고 이들 개별 물질이 각각의 신호전달 체계에 미치는 영향과 그 기작에 대한 연구가 더욱 필요할 것으로 사료되며 염증억제제로서의 개발 가능성을 탐구하기 위한 생체 내에서의 효능 및 작용기전 분석이 요구된다.

Keywords

References

  1. Park, M. G. : Korean ginseng. Korea Ginseng and Tobacco Research Institute, Seoul Korea, p.63 (1994)
  2. Park, C. K., Jeon, B. S. and Yang, J. W.: The chemical components of Korean Ginseng. Korean J. Food & Nutr. 8, 10- 23 (2003)
  3. Kawai, T. and Akira, S.: TLR signaling. Cell Death Differ. 13, 816-25 (2006) https://doi.org/10.1038/sj.cdd.4401850
  4. Takeuchi, O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R. L. and Akira, S.: Cutting edge: Role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169, 10-14 (2002) https://doi.org/10.4049/jimmunol.169.1.10
  5. Alexopoulou, L., Holt, A. C., Medzhitov, R. and Flavell, R. A.: Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 413, 732-738 (2001) https://doi.org/10.1038/35099560
  6. Takeuchi, O., Hoshino. K., Kawai, T., Sanjo, H., Takada, K., Oqawa, T., Takeda, K. and Akira, S.: Differential roles of TLR2 and TLR4 in recognition of gram-negative and grampositive bacterial cell wall components. Immunity. 11, 443- 451 (1999) https://doi.org/10.1016/S1074-7613(00)80119-3
  7. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K. and Akira, S.: A Toll-like receptor recognizes bacterial DNA. Nature. 408, 740-745 (2000) https://doi.org/10.1038/35047123
  8. Wieland, C. W., Florquin, S., Maris, N. A., Hoebe, K., Beutler, B., Takeda, K., Akira, S. and van der Poll, T.: The MyD88-dependent, but not the MyD88-independent, pathway of TLR4 signaling is important in clearing nontypeable haemophilus influenzae from the mouse lung. J. Immunol. 175, 6042-6049 (2005) https://doi.org/10.4049/jimmunol.175.9.6042
  9. Chi, H., Kim, D. H. and Ji, G. E.: Transformation of Ginsenosides Rb2 and Rc from Panax ginseng by Food Microorganisms. Biol. Pharm. Bull. 28, 2102-2105 (2005) https://doi.org/10.1248/bpb.28.2102
  10. Jun, S. H., Woo, M. S., Kim, S. Y., Kim, W. K., Hyun, J. W., Kim, E. J., Kim, D. H. and Kim, H. S.: Ginseng saponin metabolite suppresses phorbol ester-induced matrix metalloproteinase- 9 expression through inhibition of activator protein-1 and mitogen-activated protein kinase signaling pathways in human astroglioma cells. Int. J. Cancer. 118, 490-497 (2006) https://doi.org/10.1002/ijc.21356
  11. Paek, I. B., Moon, Y., Kim, J., Ji, H.Y., Kim, S.A., Sohn, D.H., Kim, J.B. and Lee, H.S.: Pharmacokinetics of a ginseng saponin metabolite compound K in rats. Biopharm. Drug. Dispos. 27, 39-45 (2006) https://doi.org/10.1002/bdd.481
  12. Ding, A. H., Nathan, C. F. and Stuehr, D. J.: Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. J. Immunol. 141, 2407-2412 (1988)
  13. Keum, Y. S., Han, S. S., Chun, K. S., Park, K. K., Park, J. H., Lee, S. K. and Surh, Y. J.: Inhibitory effects of the ginsenoside Rg3 on phorbol ester-induced cyclooxygenase-2 expression, NF-kappaB activation and tumor promotion. Mutat. Res. 523-524, 75-85 (2003)
  14. Zhang, Q., Kang, X. and Zhao, W.: Antiangiogenic effect of low dose cyclophosphamide combined with ginsenoside Rg3 on Lewis lung carcinoma. Biochem. Biophys. Res. Commun. 342, 824-828 (2006) https://doi.org/10.1016/j.bbrc.2006.02.044
  15. Wu, C. F., Bi, X. L., Yang, J. Y., Zhan, J. Y., Dong, Y. X., Wang, J. H., Wang, J. M., Zhang, R. and Li, X.: Differential effects of ginsenosides on NO and TNF-alpha production by LPSactivated N9 microglia. Int. Immunopharmacol. 7, 313-320 (2007) https://doi.org/10.1016/j.intimp.2006.04.021
  16. Wang, T., Lafuse, W. P. and Zwilling, B. S.: NFkappaB and Sp1 elements are necessary for maximal transcription of toll-like receptor 2 induced by Mycobacterium avium. J.Immunol. 167, 6924-6932 (2001)
  17. Pathak, S. K., Bhattacharyya, A., Pathak, S., Basak, C., Mandal, D., Kundu, M. and Basu, J.: Toll-like receptor 2 and mitogen- and stress-activated kinase 1 are effectors of Mycobacterium avium-induced cyclooxygenase-2 expression in macrophages. J. Biol. Chem. 279, 55127-55136 (2004) https://doi.org/10.1074/jbc.M409885200
  18. Pennini, M. E., Pai, R. K., Schultz, D. C., Boom, W. H. and Harding, C. V.: Mycobacterium tuberculosis 19-kDa lipoprotein inhibits IFN-gamma-induced chromatin remodeling of MHC2TA by TLR2 and MAPK signaling. J. Immunol. 176, 4323-4330 (2006) https://doi.org/10.4049/jimmunol.176.7.4323
  19. Surewicz, K., Aung, H., Kanost, R. A., Jones, L., Hejal, R. and Toossi, Z.: The differential interaction of p38 MAP kinase and tumor necrosis factor-alpha in human alveolar macrophages and monocytes induced by Mycobacterium tuberculosis. Cell Immunol. 228, 34-41 (2004) https://doi.org/10.1016/j.cellimm.2004.03.007
  20. Hasan, Z., Shah, B. H., Mahmood, A., Young, D. B. and Hussain, R.: The effect of mycobacterial virulence and viability on MAP kinase signaling and TNF alpha production by human monocytes. Tuberculosis (Edinb.). 83, 299-309 (2003) https://doi.org/10.1016/S1472-9792(03)00003-9
  21. Song, C. H., Lee, J. S., Lee, S. H., Lim, K., Kim, H. J., Park, J. K., Paik, T.H. and Jo, E. K.: Role of mitogen-activated protein kinase pathways in the production of tumor necrosis factor-alpha, interleukin-10, and monocyte chemotactic protein- 1 by Mycobacterium tuberculosis H37Rv-infected human monocytes. J. Clin. Immunol. 23, 194-201 (2003) https://doi.org/10.1023/A:1023309928879
  22. Yang, C. S., Lee, J. S., Jung, S. B., Oh, J. H., Song, C. H., Kim, H. J., Park, J. K., Paik, T. H. and Jo, E. K.: Differential regulation of interleukin-12 and tumour necrosis factoralpha by phosphatidylinositol 3-kinase and ERK 1/2 pathways during Mycobacterium tuberculosis infection. Clin. Exp. Immunol. 143, 150-160 (2006) https://doi.org/10.1111/j.1365-2249.2005.02966.x
  23. Yang, C. S., Song, C. H., Lee, J. S., Jung, S. B., Oh, J. H., Kim, H. J., Park, J. K., Paik, T. H. and Jo, E. K.: Intracellular network of phosphatidylinositol 3-kinase, mammalian target of the rapamycin/70 kDa ribosomal S6 kinase 1, and mitogen- activated protein kinases pathways for regulating mycobacteria-induced IL-23 expression in human macrophages. Cell Microbiol. 8, 1158-1171 (2006) https://doi.org/10.1111/j.1462-5822.2006.00699.x
  24. Jo, E. K., Yang, C. S., Choi, C. H. and Harding, C. V.: Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cellular Microbiology. 9, 1087-1098 (2007) https://doi.org/10.1111/j.1462-5822.2007.00914.x
  25. Balkwill, F. R.: Tumour necrosis factor. Br. Med. Bull. 45, 389-400 (1989) https://doi.org/10.1093/oxfordjournals.bmb.a072330
  26. Flynn, J. L., Goldstein, M. M., Chan, J., Triebold, K. J., Pfeffer, K., Lowenstein, C. J., Schreiber, R., Mak, T. W. and Bloom, B. R.: Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity. 2, 561-572 (1995) https://doi.org/10.1016/1074-7613(95)90001-2
  27. Liew, F. Y., Li, Y. and Millott, S.: Tumor necrosis factor-$\alpha$ synergizes with IFN-${\gamma}$ in mediating killing of Leishmania major through the induction of nitric oxide. J. Immunol. 145, 4306-4310 (1990)
  28. Kindler, V., Sappino, A. P., Grau, G. E., Piguet, P. F. and Vassalli, P.: The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell. 56, 731-740 (1989) https://doi.org/10.1016/0092-8674(89)90676-4
  29. Jones, A. L. and Selby, P.: Clinical applications of tumour necrosis factor. Prog Growth Factor Res. 1, 107-122 (1989) https://doi.org/10.1016/0955-2235(89)90005-7
  30. Paqurt, P. and Pierard, G. E.: Interleukin-6 and the skin. Int.Arch. Allergy Immunol. 109, 308-317 (1996) https://doi.org/10.1159/000237257
  31. Chew, C. H., Chew, G. S., Najimudin, N. and Tengku- Muhammad, T. S.: Interleukin-6 inhibits human peroxisome proliferator activated receptor alpha gene expression via CCAAT/enhancer-binding proteins in hepatocytes. J. Biochem. Cell Biol. In press (2007) https://doi.org/10.4093/jkda.2007.31.4.297
  32. Sparwasser, T., Miethke, T., Lipford, G., Borschert, K., Hacker, H., Heeg, K. and Wagner, H.: Bacterial DNA causes septic shock. Nature. 386, 336-337 (1997) https://doi.org/10.1038/386336a0
  33. Klinman, D. M., Takeshita, F., Gursel, I., Leifer, C., Ishii, K. J., Verthelyi, D. and Gursel, M.: CpG DNA: recognition by and activation of monocytes. Microbes Infect. 4, 897-901 (2002) https://doi.org/10.1016/S1286-4579(02)01614-3
  34. Yi, A. K., Tuetken, R., Redford, T., Waldschmidt, M., Kirsch, J. and Krieg, A. M.: CpG motifs in bacterial DNA activate leukocytes through the pH-dependent generation of reactive oxygen species. J. Immunol. 160, 4755-4761 (1998)
  35. Kobayashi, K., Hernandez, L. D., Galan, J. E., Janeway, C. A., Jr Medzhitov, R. and Flavell, R. A.: IRAK-M is a negative regulator of toll-like receptor signaling. Cell. 110, 191-202 (2002) https://doi.org/10.1016/S0092-8674(02)00827-9
  36. Hacker, H., Vabulas, R. M., Takeuchi, O., Hoshino, K., Akira, S. and Wagner, H.: Immune cell activation by bacterial CpGDNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF) 6. J. Exp. Med. 192, 595-600 (2000) https://doi.org/10.1084/jem.192.4.595
  37. Chu, W., Gong, X., Li, Z., Takabayashi, K., Ouyang, H., Chen, Y., Lois, A., Chen, D. J., Li, G. C., Karin, M. and Raz, E.: DNA-PKcs is required for activation of innate immunity by immunostimulatory DNA. Cell. 103, 909-918 (2000) https://doi.org/10.1016/S0092-8674(00)00194-X
  38. Slotta, J. E., Scheuer, C., Menger, M. D. and Vollmar, B.: Immunostimulatory CpG-oligodeoxynucleotides (CpG-ODN) induce early hepatic injury, but provide a late window for protection against endotoxin-mediated liver damage. J. Hepatol. 44, 576-585 (2006) https://doi.org/10.1016/j.jhep.2005.08.014

Cited by

  1. Effects of Extract from Fermented Flower-buds of Panax ginseng C.A. Meyer on Mouse Cytokine IL-6, TNF-α Production vol.27, pp.1, 2014, https://doi.org/10.9799/ksfan.2014.27.1.043
  2. Red ginseng powder fermented with probiotics exerts antidiabetic effects in the streptozotocin-induced mouse diabetes model vol.55, pp.1, 2017, https://doi.org/10.1080/13880209.2016.1237978