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Stability of nonlinear differential

system by Lyapunov method

oh & Bt

(Jeong Hyang An)

Abstract We abtain some stability results for a very general differential system using the method
of cone valued vector Lyapunov functions and conversely some sufficient conditions for existence of

such vector Lyapunov functions.
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1. Preliminaries and Definitions

Lyapunov second methods are now well
established subjects as the most powerful
techniques of analysis for the stability and
qualitative properties of nonlinear differential
equations 2’ = f(t,z), z(t,) =z, R".

One of the original Lyapunov theorems is as
follows:

Lyapunov Theorems. For =’ = f(t,z), assume
that there exists a function V:ZR, XS—R,
such that
(i) V is C'-function and positive definite,

(i) V is decresent,

(iii) :%V@z%=%&@%kn-f&@)g—dﬂzﬂ)

for t>0, 25, where §,={z€RMIzl <y}
for p>0, a(r) is strictly increasing function
with a(0)=0.

Then the trivial solution z(t) =0 is uniformly
asymptotically stable.

The advantage of the method is that it does
not require the knowledge of solutions to
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analysis the stability of the equations. However
to find suitable
Laypunov functions V for given equations are
the most difficult questions. Hence weakening
the conditions (i), (i), and (i), and enlarging
the class of Lyapunov functions are basic trends
in Lyapunov stability theory [2, 3, 4, 5, 6, 11].
In the unified comparison frameworks, Ladde
(71 analysed the stability of
differential equations by using vector Lyapunov

In practical sense, how

comparison

function methods.

Lakeshmikantham and Leela [9] initiated the
cone valued Lyapunov function methods to
avoid the quasimonotonicity assumption - of
comparison equations. They obtained various
useful differential inequalities with cone—valued
Lyapunov functions, Akpan and Akinyele [1]
extended and generalized the results of [7,8] to

the ¢;—stability of the compari ~son differential
equations by using the cone-valued Lyapunov
functions.

Here we generalize, in some sense, the results
of [1] to the ¢(t)-stabilities of comparison
equations below.

Let R" denote the n-dimensional Euclidean

_54_



space with- any equivalent norm
scalar product(,).

R+ = [0700) C[R+ XR"? Rn

I« I, and

denotes the
space of continuous functions from R, X R"

into R",

Definition 1.1 ([11]). A proper subset K of
R"™ is called a cone if () AKC K, A= 0; (i)
K+KC K, (i) K=K; (v) K" = 3; ()
KN (K), = ={0} where K and K° denote
the closure and interior of A, respectively and

3

8K denotes the boundary of K. The order

relation on R" induced by the cone K is
defined as follow:

For z,y€R", z <,y
T =<,y iff y—zEK",

iff z—y=K, and

’

Definition 12 ([11D. The set
K*={¢€R": ($,2) >0, for all z€K} is
called the adjoint cone of K if K* itself
satisfies Definition 1.1.

Note that € 6K if and only if (¢,2)=0 for
some ¢€ K*, where K, = K— {0},

Consider the differential equation

o' =ft,z), z(ty) =z4 t, > 0 (1)

where f€ C[R, xR™,R] and f(£0)=0
for all t=0. Let S,={z€R™: Izl <y},

p>0. Let KCR" be a cone in R", n< N.
For VEC[R, xS,K] at (t,z)ER, XS5, let
D¥ Vit,z) = lim— [ V(t+hz+hf(te)) — Vits)]
h—0*
be a Dini derivative of V along the solution
curves of the equations (1),
Consider a comparison differentia equation
u' = gtu), ulty) =ugy ty =0 (2)
where ¢& C[R+><K,R"], g(t,0)=0 for all

t =0 and K is a cone in R".
Let Sp)={ucsK: lull<p}, p>0. for
vEC[R, X S(p),K]| (t,u)ER, X S(p) let DYv(t,u)

= lim = [v(t+hyu+ hg(tu) ~v(tw)] be a
h—0*

Dini derivative of v along solution curves of the
equation (2).

Definition 1.3 ([11]). A function g: D—R",
DC R" is said to be quasimonotone
nondecreasing relative to the cone A when it
satisfies that if z,y€D with z < gy and
(¢0,y—x) =0 for some ¢,= Ky, then

(9.9(y)~g(z)) = 0.

Definition 1.4 ([810]). The trivial solution
z=0 of (1) is (81) equistable if for each £> 0,
to<=R,, there function
6= 5(t0,8) such that the inequality | =yl <9
implies || z(t,ty,20) | <e, for all t > t,.

Other stability notions (Sy~Sg)
similarly defined [810].

cone-valued ¢ (t)-stability
definitions of the trival solution of (2).

exists a positive

can be

Now we give

Let ¢: [0,00] > K* be a cone-valued function.

Definition 15 ([12]). The trivial solution
u=0 of (2) is
(S1") ¢(t)-equistable if for each >0, t,ER,,
there exists a positive function 6= 3(t;,e)
such that the inequality (&(ty),uy) <9
(@), rt)) <e, for all t=t,
where r(t) is a maximal solution of (2);
(S2") uniformly ¢(t)-stable if the 6 in (S/") is
independent of t,;
Other ¢(t)-stability notions (S3"~Sg") can
be similarly defined [12].

implies

Lemma 16 ([911]).
Ve ClR, XS, K], V(t,z)
Lipschitz condition in x relative to the cone and
for (t,z)ER, * 8, D' V(tz) < 4 g(t, Vita));

(i)ge CIR* < KR and g(tu) is quasimonctone

Assume that )
satisfies a local
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in u with respect to K for each t€ R, .

If r(t,tuy) is a maximal solution of (2)
relative to K and z(t,t,,u,) is any solution of
(1) with V(ty,zy) < g ug, then on the common

interval of existence, we have
V(t,z (t,tg,70)) < g 7t te,up)-

2. Main Resuts

In this
conditions for

nvestigate sufficient
¢(t)-stability of the trivial
solution u=0 of the comparison system(2). We
stability
concepts of the trivial solution x=0 of (1) using
differential with the method of
cone-valued Lyapu —nov vector function.

section, we

also investigate the corresponding

inequalities

Theorem 2.1. Assume that

) VEC[R. x8,K]|, Vitz) is locally
Lipschitzian in x relative to K and for
(t,z)ER, X8, D" V(t,z) < 0,

(i) g¢g< C'[R+ ><K,R"] and g¢(t,u) s
quasimonotone in u relative to K for each
te R,

(ili) ¢(¢t)EK* is a bounded continuous function

on [0,0c] and a([(¢(t),r(D)]) < (¢(t),w(tu(t)),

t > t, = 0 for some function a<E K,

Then the trivial solution u=0 of (2) is ¢(t)
—eqistable.

Proof) Let ¢>0 be arbitarily given and let M
=sup{ | ¢(¢) I It = 0).

Since @ '(Ma(p)) is continuous and
a '(Ma(0))=0, there €>0 such that
a "(Ma(n)) < e for 0<n<e. Since v{t,0)=0

and v(tu) is continuous in u, given a(e;)>0,
t,E R, there exists 6; =4, (¢t,ale;)) such that
lug Il < 6, implies 1 v{tg,ug) I < ale;). Now

for the bounded continuous function ¢(t)E Ky *,

((tg)sug) < 1 p(tg) I Hugll < 1 e(2y) 11 6, -
implies ~ (¢(t),v(ty ug)< | 6®) I ale;).  Put
5= | ¢(ty) | 6,. Then(d(ty),uy) < &
(p(t),u(tgug) < I ¢@ I Il (wltg, ug) II < Male,).
Let u(t) be any solution of (2) such that
(p(ty)suy)) < & implies
al{[(¢(t),r(£)]) < (o), w(tu(t)) < (¢(2),v(tyulty))<
Mae,).

Hence (¢(t),r(t)) < a '(Male;)) < e which

completes the proof.

implies

Theorem 2.2 ([12]). Assume that
() VEC[R. xS, K|, Vl,z) is locally

Lipschitzian in x relative to K and for
(t,I)€R+XSp, D+V(t7$) < Kg(t7 V(tax)),

(i) gEC|R,XKR"| and

quasimonotone in « relative to K for each

glt,u) s

tER,,

(iii) there exist a,b& K such that for some
¢ (t)E K, for each € Sp,
b(lzll) < (@), Vit,z)) <a(llzl)
t=1t,=>0

Then the trivial solution z =0 of (1) has the
corresponding one of the stability (S1~Ss)

properties if the trivial solution =0 of (2) has

each one of the ¢(t)-stability (Si"~Ss)
properties in Defimtion 1.5.

Theorem 2.3 Assume that

(i) VEC|R,XS,K|, V,z) is positive

definite and locally Lipschitzian in X
relativeto K and for (t,z)E R, XS, where

A)>0 is continuous function,
A@)DT V(t,z)+ Vit,z) DT A(t)
< g9t V(t,z)A®R)),

(i) g€ C[R+><K,R"] and ¢g(t,u) s

quasimonotone in u relative to A for each
tER+7

(iii) there exist b€ A such that for some
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o(t)E Ky, for each
b(llzh) <
t=2t =0
Then if the trivial solution u=0 of (2) is
¢ (t)-eqistable(uniformly ¢(t)-stable), the trivial
solution =0 of (1) is stable (uniformly
stable).

&€ Sp,

(@), Vit,2)) <a(] 2] ),

Proof) Suppose that the trivial solution u =0
of (2) is ¢(t)-eqistable. Let 0<e<p be
arbitrarily given and ¢,< R,. Then there exists
6=16(tp,e)> 0 such that (¢(ty),uy)<s implies
(p(),r(t))<ble) for all t>t, where r(t) be a
maximal solution of (2) relative to K. For given
zy=1z(t))ES, we can take uy=u(ty) in K
such  that  a(ll z(t) ||) = (¢(ty), V) A(ty))
and V(ty, 2 (t)A (%)) < & u,.

Note that if z(t,tg,z,) is any solution of (1)
such  that V(g2 (ty)A(t)) < guy,  then
Vit,z(t)A[)) < £r(t).

From (iii), we may assume that V{(¢,0)=0.
Suppose uge K° and (¢ (ty),u,d (t,)<5. Since
V(t,z)A(t) is continuous in x, there exist
8 (ug)> 0 such that Vit z(ty)A(t,)) < 4 u
for any Iz Il <6,

Now choose 6,> 0 such that a(6,) <6 and

8, < 4. Then the inequalities | z(ty) Il <6, and

a(lz(ty) 1 )<6 hold simultaneously. Since
b(llz(t) 1)< b(e)
< (@), Vit,z@®)A®))) < (¢(),r(t))for all
t>ty, | z(teze) | <e whenever 1 az(t,)

<4;. Hence the trivial solution x=0 of (1) is
egistable.

Let H={aEC[R R, ]|at) is strict -ly

increasing in t and a(0)=0}.

Theorem 2.4 Assume that

i) fECRr.x8,,R"], f(,0)=0, and f(t,x)

satisfies a Lipschitz condition in x such that
I ftz)=fty) | g, < x L ()
X lz—yl «,,t2),(t,y)ER, X Sp  with
6>0,t=>0,L(s)ds < NO for some
constant V> 0.
(ii) The solution z(¢,0,7,) of (1) satis -fies
that any z,€.S,,
Billaoll) < [ 2(t,0,00) | < Bo( 2o )
, for some £,,8,€K 3
(iii) g€ ClR, x K,R",g(t,0)=0, and g(t,u)
satisfies a Lipschitz condition in u such
that || g(t,u)—g{t,0) |
< g L) | u—v | & (tu),(t,v)ER. XK.
(iv) The solution u(t,0,u,) of (2) satisfies that
1 [(p(8),u)]
< (¢(t),ult,0,uy)) < wl(d(t),u)l, t =0 4
for some ¢(t)E K, , some 7,7, EK.
Then there exists a cone-valued function V
with the properties
(@)D V(t,z) < & g Vit,z)).

®o(lzl) =< (@), Vit,z) <a(lz|), for
some a,bEK

Proof) From (Jand (i), the existence and
uniqueness of solutions of (1) and (2) as well
as their continuous dependence on the initial
values are followed.

Let =(t,0,z,),u(t,0,uy) be the solutions of
(1) and (2) passing through the points (0,z)
and (0,u,) satisfying (3 )and (4), respectively.

Let us choose a function G(r) such that

G(0)=0,G'(0)=0,G(r)>0,G"(r)>0 for

r>0, and let a> 1,

GT):/ du/ G (v)dv and
0 o

r/a u
= / du/ G (v)dv,
0 0

we have, setting v = w/a,
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(L) = 1\/dw G" (v)dv
< gfo dwfo G (v)dv = EG(T).

Let w be any given point in K. Let

O :S; —K be a function with values in the
cone A C R", defined by for xES; )

o,(x)= 11-:0;6 Jw (5)

For 6=0, we have from (5) that

Gz w< g o,(z),

and (¢(t),G(] 2 | w) < (¢(t),0,(z)) for any

¢(t)EK, and each t=>0. Suppose that 7, =

inf{(¢(t),w):t > 0}>0. Let B(r)=n,G(r),r>0.

Then B3(|z| )< (¢(t),0,(z)), for each

e>0, let 6=2;"(e).

|z <6 implies

<By( I 2ol ) < B,(8) =B,(B7 ()} =€, = 0.
Hence the solution z =0 of (1) is uniformly

stable. Thus by Theorem 543 in [14],
| z@t+6,¢tz)| <e(|z|) cEK. Therefore

G(| z(t+6,tz) ] )

From the estimate (3),

Il z(t) |

Gl z(t+da,t,2) 1 0)< Gle(fz | ). Since
(14 ad)/(146) < e, it follow that
(6(t),0,(w)) < (@), aGle( | z | )w)
< naGle(| = || )-

Suppose that 7, = sup{(¢(t),w):t > 0}< oo.
Hence if B,(r) = 2aG( (r)), th
Bl zll)<(o(t)o,(=) < /54(||$|1)' (6)

Define a cone-valued function V(t,z) by
t> O,mESp*,
Vit,z) =u(t,0,0,(z(t,0,2))) ¢

where u(t,0,u,) are solutions of (2) passing
through (0,u,). By hypotheses ()and (iii) and
the choice of o, (z), V(t,z) is continuous in t

and x.

For h > 0 sufficiently small,
V(i+h,z+hftz))— Vit,z)
< xB@) | z+hf(t,z)—z(t+htz)|

Xelt,z,h)

+ V(t+ h,z(t,h,t,z))— Vt,z), where

limle (t,z,h)=0.

t—o0 h

Divide both sides by h and take lim as
h—0" to obtain D V(t,z)

< Klim[% Vt+ha(t+htz)— Vit,z)
h—0"
= lim ~[ut + h,0,0, (z (t+ h,0,2)))

ho* 1
—u(t,0,0,(t,0,2)))]
=u'(t,0,0,(z(#,0,2))) = g(t, Vit,xz)).
Now from (3), we can take §,,8,€K which
satisfy (3) and (8) simultaneously,
gz l)< lzt0,z) | <8 ' (lzl)
(8). Since
(@(t), V(t,z)) = (6(t),u(t,0,0,(t,0,2)))  from
(4), (6), and (8) we have
(p(t), V(t,z) = 7 (¢(t),0,(2(t,0,2))))
= ’71(ﬂ3( I $(ta0,$) I )
=y BBz )=>b(]z])bEK. On the
other hand
(6(t), Vit,z) < % (o),
= 72(54( | x| )
$72(ﬂ4(ﬂ1_1(”$” ), a€K
This completes the proof of Theorem 2.4.

0,((t,0,2))))
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