Detection and Characterization of a Lytic Pediococcus Bacteriophage from the Fermenting Cucumber Brine

  • Yoon, Sung-Sik (Institute of Functional Biomaterials and Biotechnology, Yonsei University) ;
  • Baprangou-Poueys Roudolphe (USDA/ARS, Department of Food Science, North Carolina State University) ;
  • Jr Fred Breidt (USDA/ARS, Department of Food Science, North Carolina State University) ;
  • Fleming Henry P. (USDA/ARS, Department of Food Science, North Carolina State University)
  • Published : 2007.02.28

Abstract

Of the twelve lytic bacteriophages recovered from five different fermenting cucumber tanks that were inoculated with Pediococcus sp. LA0281, a lytic phage, ${\phi}ps05$, was characterized in the present study. The plaques were mostly clear and round-shaped on the lawn of starter strain, indicating lytic phage. Overall appearance indicated that it belongs to the Siphoviridae family or Bradley's group B1, with a small isometric head and a flexible noncontractile tail with swollen base plate. The average size was found to be 51.2 nm in head diameter and 11.6 nm wide ${\times}$ 129.6 nm long for the tail. The single-step growth kinetics curve showed that the eclipse and the latent period were 29 min and 34 min, respectively, and an average burst size was calculated to be 12 particles per infective center. The optimum proliferating temperature ($35^{\circ}C$) was slightly lower than that of cell growth ($35\;to\;40^{\circ}C$). The structural proteins revealed by SDS-PAGE consisted of one main protein of 33 kDa and three minor proteins of 85, 58, and 52 kDa. The phage genome was a linear double-stranded DNA without cohesive ends. Based on the single and double digestion patterns obtained by EcoRI, HindIII, and SalI, the physical map was constructed. The overall size of the phage genome was estimated to be 24.1 kb. The present report describes the presence of a lytic phage active against a commercial starter culture Pediococcus sp. LA0281 in cucumber fermentation, and a preliminary study characterizes the phage on bacterial successions in the process of starter-added cucumber fermentation.

Keywords

References

  1. Ackermann, H.-W. 1996. Frequency of morphological phage descriptions in 1995. Arch. Virol. 141: 209-218 https://doi.org/10.1007/BF01718394
  2. Adams, M. H. 1959. Bacteriophages, pp. 27-34. Interscience Publishers Inc., New York
  3. Anderson, R. E., M. A. Daeschel, and C. E. Ericksson. 1988. Controlled lactic acid fermentation of vegetables, pp. 855- 868. In: Proceedings of 8th International Biotechnology Symposium, Paris, France
  4. Black, L. W. 1989. DNA packaging in dsDNA bacteriophages. Annu. Rev. Microbiol. 43: 267-292 https://doi.org/10.1146/annurev.mi.43.100189.001411
  5. Bradley, D. E. 1967. Ultrastructure of bacteriophages and bacteriocins. Bacteriol. Rev. 31: 230-314
  6. Bruttin, A., F. Desiere, N. d'Amico, J. P. Guerin, J. Sidoti, B. Huni, S. Lucchini, and B. Brüssow. 1997. Molecular ecology of Streptococcus thermophilus bacteriophage infection in a cheese factory. Appl. Environ. Microbiol. 63: 3144-3150
  7. Caldwell, S. L., D. J. McMahon, C. J. Oberg, and J. R. Broadbent. 1996. Development and characterization of lactose-positive Pediococcus species for milk fermentations. Appl. Environ. Microbiol. 62: 936-941
  8. Caldwell, S. L., D. J. McMahon, and J. R. Broadbent. 1999. Characterization of three Pediococcus acidilactici temperate bacteriophage, p. F13. In: Abstract of 6th Symposium on Lactic Acid Bacteria. Veldhoven, The Netherlands, September 19-23
  9. Daeschel, M. A. and H. P. Fleming. 1984. Selection of lactic acid bacteria for use in vegetable fermentations. Food Microbiol. 1: 303-313 https://doi.org/10.1016/0740-0020(84)90064-9
  10. Doermann, A. H. 1952. The intracellular growth of bacteriophage. I. Liberation of intracellular bacteriophage T4 by premature lysis with another phage or with cyanide. J. Gen. Microbiol. 35: 645-650
  11. Ellis, E. L. and M. Delbrück. 1939. The growth of bacteriophage. J. Gen. Physiol. 22: 365-384 https://doi.org/10.1085/jgp.22.3.365
  12. Fleming, H. P. 1984. Developments in cucumber fermentation. J. Chem. Tech. Biotechnol. 34B: 241-251
  13. Fleming, H. P., R. F. McFeeters, M. A. Daeschel, E. G. Humphries, and R. L. Thompson. 1988. Fermentation of cucumbers in anaerobic tanks. J. Food Sci. 53: 127- 133 https://doi.org/10.1111/j.1365-2621.1988.tb10192.x
  14. Fleming, H. P., K. H. Kyung, and F. Breidt. 1995. Vegetative fermentation, pp. 631-661. In Reed, G. and T. W. Nagodawithana (eds.), Biotechnolgy, Vol. 9, 2nd Ed. VCH Publishing Co., Germany
  15. Forsman, P. and T. Alatossava. 1991. Genetic variation of Lactobacillus delbrueckii subsp. lactis bacteriophages isolated from cheese precessing plants in Finland. Appl. Environ. Microbiol. 57: 1805-1812
  16. Foschino, R., F. Perrone, and A. Galli. 1995. Characterization of two virulent Lactobacillus fermentum bacteriophages isolated from sour dough. J. Appl. Bacteriol. 79: 677- 683 https://doi.org/10.1111/j.1365-2672.1995.tb00954.x
  17. Gautier, M., A. Rouault, P. Sommer, and R. Briandet. 1995. Occurrence of Propionibacterium freudenrechii bacteriophages in Swiss cheese. Appl. Environ. Microbiol. 61: 2572-2576
  18. Gravie, E. I. 1986. Genus Pediococcus, pp. 1075-1079. In Sneath, P. H., N. S. Mair, and J.G. Holt (eds.). Bergey's Manual of Systematic Bacteriology, Vol. 2. Williams & Wilkins, NY
  19. Jarvis, A. W. 1989. Bacteriophages of lactic acid bacteria. J. Dairy Sci. 72: 3406-3428 https://doi.org/10.3168/jds.S0022-0302(89)79504-7
  20. Kim, S. Y., Y. M. Lee, S. Y. Lee, Y. S. Lee, J. H. Kim, C. Ahn, B. C. Kang, and G. E. Ji. 2001. Synergistie effect of citric acid and pediocin K1, a bacteriocin produced by Pediococcus sp. K1, on inhibition of Listeria monocytogenes. J. Microbiol. Biotechnol. 11: 831-837
  21. Kwon, D. Y., M. S. Koo, C. R. Ryoo, C. H. Kang, K. H. Min, and W. J. Kim. 2002. Bacteriocin produced by Pediococcus sp. in kimchi and its characteristics. J. Microbiol. Biotechnol. 12: 96-105
  22. Lawrence, R. C. 1978. Action of bacteriophage on lactic acid bacteria: Consequences and protection. NZ J. Dairy Sci. Technol. 13: 129-136
  23. Manchester, L. N. 1997. Characterization of bacteriophage from Carnobacterium divergens NCFB 2763 by host specifity and electron microscopy. Lett. Appl. Microbiol. 25: 401-404 https://doi.org/10.1111/j.1472-765X.1997.tb00005.x
  24. Matthews, R. E. F. 1982. Classification and nomenclature of viruses. Fourth report of the international committee on taxonomy of viruses. Intervirology 17: 1-10
  25. Murphy, F. A., C. M. Fauquet, D. H. L. Bishop, S. A. Ghabrial, A. W. Jarvis, G. M. Martelli, M. A. Mayo, and M. D. Summers (eds.). 1995. Virus Taxonomy: Classification and nomenclature of Viruses. Springer, Vienna, Austria
  26. Neve, H., U. Krusch, and M. Teuber. 1989. Classification of virulent bacteriophages of Streptococcus salivarius subsp. thermophilus isolated from yoghurt and Swiss-type cheese. Appl. Microbiol. Biotechnol. 30: 624-629
  27. Quiberoni, A. and J. A Reinheimer. 1998. Physicochemical characterization of phage adsorption to Lactobacillus helveticus ATCC 15807 cells. J. Appl. Microbiol. 85: 762-768 https://doi.org/10.1111/j.1365-2672.1998.00591.x
  28. Reddy, M. S. 1974. Development of cultural techniques for the study of Streptococcus thermophilus and Lactobacillus bacteriophages. Ph.D. Thesis, Iowa State University, Ames
  29. Rodriguez, J. M., L. M. Cintas, P. Casaus, M. I. Martinez, A. Suarez, and P. E. Hernandez. 1997. Detection of pediocin PA-1-producing Pediococci by rapid molecular biology techniques. Food Microbiol. 14: 363-371 https://doi.org/10.1006/fmic.1996.0084
  30. Sambook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecualr Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Habor, N. Y
  31. Santos, R., G. Vieira, M. A. Santos, and H. Paveia. 1996. Characterization of temperate bacteriophages of Leuconostoc oenos and evidence for two prophage attachment sites in the genome of starter strain PSU-1. J. Appl. Bacteriol. 81: 383- 392
  32. Sechaud, L., P.-J. Cluzel, M. Rousseau, A. Blaumgartner, and J.-P. Accolas. 1988. Bacteriophages of lactobacilli. Biochimie 70: 401-410 https://doi.org/10.1016/0300-9084(88)90214-3
  33. Stiles, M. E. and J. W. Hastings. 1991. Bacteriocin production by lactic acid bacteria: Potential for use in meat preservation. Trends Food Sci. Technol. 2: 247-251 https://doi.org/10.1016/0924-2244(91)90706-O
  34. Terzaghi, B. E. and W. E. Sandine. 1975. Improved medium for lactic streptococci and their bacteriophages. Appl. Environ. Microbiol. 29: 807-823
  35. Uchida, K. and C. Kanabe. 1993. Occurrence of bacteriophages lytic for Pediococcus halophilus, a halophilic lactic-acid bacterium, in soy-sauce fermentation. J. Gen. Appl. Microbiol. 39: 429-437 https://doi.org/10.2323/jgam.39.429
  36. Valyasevi, R., W. E. Sandine, and B. L. Geller. 1990. The bacteriophage kh receptor of Lactococcus lactis ssp. cremoris KH is the rhamnose of the extracellular wall polysaccharide. Appl. Environ. Microbiol. 56: 1882-1889
  37. Yamamoto, K. R., B. M. Alberts, R. Benzinger, L. Lawhorne, and G. Treiber. 1970. Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology 40: 734-739 https://doi.org/10.1016/0042-6822(70)90218-7
  38. Yoon, S. S., R. Barrangou-Poueys, F. Breidt Jr., T. R. Klaenhammer, and H. P. Fleming. 2002. Isolation and characterization of bacteriophages from fermenting sauerkraut. Appl. Environ. Microbiol. 68: 973-976 https://doi.org/10.1128/AEM.68.2.973-976.2002