Thermal Resistance and Inactivation of Enterobacter sakazakii Isolates during Rehydration of Powdered Infant Formula

  • Kim, Soo-Hwan (Department of Food Science and Biotechnology, Kyungwon University) ;
  • Park, Jong-Hyun (Department of Food Science and Biotechnology, Kyungwon University)
  • Published : 2007.02.28

Abstract

Enterobacter sakazakii may be related to outbreaks of meningitis, septicemia, and necrotizing enterocolitis, mainly in neonates. To reduce the risk of E. sakazakii in baby foods, thermal characteristics for Korean E. sakazakii isolates were determined at 52, 56, and $60^{\circ}C$ in saline solution, rehydrated powdered infant formula, and dried baby food. In saline solution, their D-values were 12-16, 3-5, and 0.9-1 min for each temperature. D-values increased to 16-20, 4-5, and 2-4 min in rehydrated infant formula and 14-17, 5-6, and 2-3 min in dried baby food. The overall calculated z-value was 6-8 for saline, 8-10 for powdered infant formula, and 9-11 for dried baby food. Thermal inactivation of E. sakazakii during rehydration of powdered infant formula was investigated by viable counts. Inactivation of cultured E. sakazakii in infant formula milk did not occur for 20 min at room temperature after rehydration with the water at $50^{\circ}C$ and their counts were reduced by about 1-2 log CFU/g at $60^{\circ}C$ and 4-6 log CFU/ml with the water at 65 and $70^{\circ}C$. However, the thermo stability of adapted E. sakazakii to the powdered infant formula increased more than two times. Considering that the levels of E. sakzakii observed in powdered infant formula have generally been 1 CFU/100 g of dry formula or less, contamination with E. sakazakii can be reduced or eliminated by rehydrating water with at least $10^{\circ}C$ higher temperature than the manufacturer-recommended $50^{\circ}C$.

Keywords

References

  1. Arsenic, A., E. Malamou-Ladas, C. Koustsia, M. Zanthou, and E. Trilla. 1987. Outbreak of colonization of neonates with Enterobacter sakazakii. J. Hosp. Infect. 9: 143-150 https://doi.org/10.1016/0195-6701(87)90052-1
  2. Bar-Oz, B., A. Preminger, O. Peleg, C. Block, and I. Arad. 2001. Clinical observation Enterobacter sakazakii infection in the newborn. Acta Paediatr. 90: 356-358 https://doi.org/10.1111/j.1651-2227.2001.tb00319.x
  3. Clark, N. C., B. C. Hill, C. M. O'Hara, O. Steingrimsson, and R. C. Cooksey. 1990. Epidemiologic typing of Enterobacter sakazakii in two neonatal nosocomial outbreaks. Diagn. Microbiol. Infect. Dis. 13: 467-472 https://doi.org/10.1016/0732-8893(90)90078-A
  4. Edelson-Mammel, S. G. and R. L. Buchanan. 2004. Thermal inactivation of Enterobacter sakazakii in rehydrated infant formula. J. Food Prot. 67: 60-63 https://doi.org/10.4315/0362-028X-67.1.60
  5. Farmer, J. J., M. A. Asbury, F. W. Hickman, and D. J. Brenner. The Enterobacteriaceae study group. 1980. Enterobacter sakazakii: A new species of 'Enterobacteriaceae' isolated from clinical specimens. Int. J. Syst. Bacteriol. 30: 369-584
  6. Himelright, I., E. Harris, V. Lorch, and M. Anderson. 2002. Enterobacter sakazakii infections associated with use of powdered infant formula Tennessee, 2001. Morb. Mortal. Wkly. Rep. 51: 297-299
  7. Iversen, C., A. Hargreaves, and S. J. Forsythe. 2003. Growth rates and D-values of E. sakazakii in 5 suspending media, pp. 17-22. In: 103th General Meeting Proceeding. May, Washington, DC, USA. American Society for Microbiology, Washington, DC, U.S.A
  8. Iversen, C., M. Lane, and S. J. Forsythe. 2004. The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant formula milk. Lett. Appl. Microbiol. 38: 378-382 https://doi.org/10.1111/j.1472-765X.2004.01507.x
  9. Jung, M.-K. and J.-H. Park. 2006. Prevalence and thermal stability of Enterobacter sakazakii from unprocessed readyto- eat agricultural products and powdered infant formulas. Food Sci. Biotechnol. 15: 152-157
  10. Kindle, G. A., D. Busse, U. Kampa, K. Meyer, and F. D. Daschner. 1996. Killing activity of microwaves in milk. J. Hosp. Infect. 33: 273-278 https://doi.org/10.1016/S0195-6701(96)90013-4
  11. Knabel, S. J., H. W. Walker, P. A. Hartman, and A. F. Mendonca. 1990. Effects of growth temperatures and strictly anaerobic recovery on survival of Listeria monocytogenes during pasteurization. Appl. Environ. Microbiol. 56: 370- 376
  12. Lai, K. K. 2001. Enterobacter sakazakii infections among neonates, infants, children, and adults: Case reports and a review of the literature. Med. Baltimore 80: 113-122
  13. Lee, S. W. and S. J. Sim. 2006. Increased heat resistance of Geobacillus stearothermophilus spores heat-shocked during sporulation. J. Microbiol. Biotechnol. 16: 633-636
  14. Muytijens, H. L., H. Roelofs-Willemse, and G. H. Jaspar. 1988. Quality of powered substitutes for breast milk with regard to members of the family Enterobacteriaceae. J. Clin. Microbiol. 26: 743-746
  15. Muytijens, H. L. and L. A. A. Kollee. 1990. Enterobacter sakazakii meningitis in neonates: Causative role of formula? Ped. Infect. Dis. J. 9: 372-373 https://doi.org/10.1097/00006454-199005000-00016
  16. Nazarowec-White, M. and J. M. Farmer. 1997. Incidence, survival, and growth of Enterobacter sakazakii in infant formula. J. Food Prot. 60: 226-230 https://doi.org/10.4315/0362-028X-60.3.226
  17. Nazarowec-White, M. and J. M. Farmer. 1997. Thermal resistance of Enterobacter sakazakii in reconstituted driedinfant formula. Lett. Appl. Microbiol. 24: 9-13 https://doi.org/10.1046/j.1472-765X.1997.00328.x
  18. Nazarowec-White, M., R. C. McKellar, and P. Piyasena. 1999. Predictive modeling of Enterobacter sakazakii inactivation in bovine milk during high-temperature shorttime pasteurization. Food Res. Int. 32: 375-379 https://doi.org/10.1016/S0963-9969(99)00100-3
  19. Noriega, F. R., K. Kotloff, M. A. Martin, and R. S. Schwalbe. 1990. Nosocomial bacteria caused by Enterobacter sakazakii and Leuconostoc mesenteroides resulting from extrinsic contamination of infant formula. Pediatr. Infect. Dis. 9: 447-449 https://doi.org/10.1097/00006454-199006000-00018
  20. Pagotto, F. J., M. Nazarowec-White, S. Bidawid, and J. M. Farber. 2003. Enterobacter sakazakii: Infectivity and enterotoxin production in vitro and in vivo. J. Food Prot. 66: 370-375 https://doi.org/10.4315/0362-028X-66.3.370
  21. Paik, S. K., H. S. Yun, H. Iwahashi, K. Obuchi, and I. Jin. 2005. Effect of trehalose on stabilization of cellular components and critical targets against heat shock in Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 15: 965- 970
  22. Read, R. B., R. W. Bradshaw, R. W. Dickerson, and J. T. Peeler. 1968. Thermal resistance of salmonella isolated from dry milk. Appl. Microbiol. 16: 998-1001
  23. Simmons, B. P., M. S. Gelfand, M. Haas, L. Metts, and J. Ferguson. 1989. Enterobacter sakazakii infections in neonates associated with intrinsic contamination of a powered infant formula. Infect. Contr. Hosp. Epidemiol. 10: 398-401 https://doi.org/10.1086/646060
  24. Son, M. K., H. D. Shin, T. L. Huh, J. H. Jang, and Y. H. Lee. 2005. Novel cationic microbial polyglucosamine biopolymer from new Enterobacter sp. BL-2 and its bioflocculation efficiency. J. Microbiol. Biotechnol. 15: 626-632