Thermal Properties and Water Sorption Behaviors of Epoxy and Bismaleimide Composites

  • Seo, Jong-Chul (Department of Chemical Engineering, Yonsei University) ;
  • Jang, Won-Bong (Department of Chemical Engineering, Yonsei University) ;
  • Han, Hak-Soo (Department of Chemical Engineering, Yonsei University)
  • Published : 2007.02.28

Abstract

In this work, we prepared epoxy/BMI composites by using N,N'-bismaleimide-4,4'-diphenylmethane (BMI), epoxy resin (diglycidyl ether of bisphenol-A (DGEBA)), and 4,4'-diamino diphenyl methane (DDM). The thermal properties and water sorption behaviors of the epoxy and BMI composites were investigated. For the epoxy/BMI composites, the glass transition and decomposition temperatures both increased with increasing BMI addition, which indicates the effect of BMI addition on improved thermal stability. The water sorption behaviors were gravi-metrically measured as a function of humidity, temperature, and composition. The diffusion coefficient and water uptake decreased and the activation energy for water diffusion increased with increasing BMI content, indicating that the water sorption in epoxy resin, which causes reliability problems in electronic devices, can be diminished by BMI addition. The water sorption behaviors in the epoxy/BMI composites were interpreted in terms of their chemical and morphological structures.

Keywords

References

  1. L. F. Thompson, C. G. Willson, and S. Tagawa, in Polymers for Microelectronics: Resists and Dielectrics, ACS Symposium, Washington, D.C., 1994, No. 537
  2. J. J. Licari and L. A. Hughes, in Handbook of Polymer Coatings for Electronics; Chemistry, Technology and Applications, 2nd Ed., Noyes Publications, New Jersey, 1990
  3. E. D. Feit, in Polymer Materials for Electronic Applications, ACS Symposium, Washington D. C., 1982, No. 184
  4. L. T. Manzione, in Plastic Packaging of Microelectronic Devices, Van Nostrand Reinhold, New York, 1990
  5. C. L. Soles and A. F. Yee, J. Polym. Sci., Polym. Phys., 38, 792 (2000)
  6. G. Z. Xiao and M. E. R. Shanahan, J. Polym. Sci., Polym. Phys., 35, 2659 (1997)
  7. C. Maggana and P. Pissis, J. Polym. Sci., Polym. Phys., 37, 1165 (1999)
  8. C. L. Soles, F. T. Chang, D. W. Gidley, and A. F. Yee, J. Polym. Sci., Polym. Phys., 38, 776 (2000)
  9. J. Zhou and J. P. Lucas, Polymer, 40, 5505 (1999)
  10. J. Zhou and J. P. Lucas, Polymer, 40, 5513 (1999)
  11. P. Musto, G. Ragosta, P. Russo, G. Scarinzi, and L. Mascia, J. Polym. Sci., Polym. Phys., 40, 922 (2002)
  12. P. Musto, E. Martuscelli, G. Ragosta, P. Russo, G. Scarinzi, and L. Mascia, J. Appl. Polym. Sci., 69, 1029 (1998)
  13. J. Crank and G. S. Park, in Diffusion in Polymers, Academic Press, London, 1968
  14. H. Han, J. Seo, M. Ree, S. M. Pyo, and C. C. Gryte, Polymer, 39, 2963 (1998)
  15. J. Seo, J. Jeon, Y. G. Shul, and H. Han, J. Polym. Sci., Polym. Phys., 38, 2714 (2000)
  16. J. Seo, C. S. Han, and H. Han, J. Polym. Sci., Polym. Phys., 39, 669 (2001) https://doi.org/10.1002/1099-0488(20010101)39:1<1::AID-POLB10>3.0.CO;2-4
  17. J. Seo, A. Lee, C. Lee, and H. Han, J. Appl. Polym. Sci., 76, 1315 (2000)
  18. P. Musto, E. Martuscelli, G. Ragosta, P. Russo, G. Scarinzi, and P. Villano, J. Mater. Sci., 33, 4595 (1998)
  19. E. M. Woo, L. B. Chen, and J. C. Seferis, J. Mater. Sci., 22, 3665 (1987)
  20. D. Klempner, L. H. Sperling, and L. A. Utracki, in Interpenetrating Polymer Networks, Advances in Chemistry, 1991, No. 239
  21. D. D. Denton, D. R. Day, D. F. Priore, and S. D. Senturis, J. Elect. Mat., 14, 119 (1985)
  22. W. H. Hubbell Jr., H. Brandt, and Z. A. Munir, J. Polym. Sci., Polym. Phys., 13, 493 (1975)
  23. P. Nogueira, C. Ramirez, A. Torres, M. J. Abad, J. Cano, J. Lopez, I. Lopez-Bueno, and L. Barral, J. Appl. Polym. Sci., 80, 71 (2001)
  24. Y. L. Chang and J. H. Jou, J. Polym. Sci., Polym. Phys., 32, 2143 (1994)
  25. S. J. Park, F. L. Jin, and J. R. Lee, Macromol. Res., 13, 8 (2005)
  26. C. S. Reddy, C. K. Das, and K. Agarwal, Macromol. Res., 13, 223 (2005)