o) o]

[= B =)

& o) Hoe Aepzt &4, &

3, HTTP % a}\:}eﬂﬁ Redirection)
ol o2 % (Routing)& A9
A B *ﬂ%ﬁﬁ iiEE}"‘Oﬂ Z7vstd

719{E : YE[D|CI0) Al2", HIC|2 M, 83 2|, LVS, DNS, CDN

=
n
2

4
o
ne
o
=
—
)
u
D

~
o
of
O
i
1
na

a9l HTTP 2cjeld g
W deule) a8 T

2l A 7

rok

2
ehgeh e, old @ 2AsE 22 %xﬂ@ £¢ Ao, %ab
o

BEIDICI AfAE 728 15

boAL offf
o (=]

&4 (Costefficiency)ol A 34 €& =zl u HZ2H Eol
md AH 28 6117%}ﬁ HFE viHe MH 28 g4 9
Personal Computer), % A A (Operating System), ¥t AH &
gaplstgn, et T2EEYE AL e AR g Hge

MediaFrame: Parallel multimedia system architecture
through HTTP redirection

Kim Seongki®

- Han SangYong™

ABSTRACT

As a single video server exposes its limitation in scalability, capability, fault-tolerance, and cost-efficiency, solutions of this limitation
emerge. However, these solutions have their own problems that will be discussed in this paper. To solve these problems and exploit
various video servers, we designed a parallel multimedia system architecture that supported a content-aware routing to heterogeneous
personal computer (PC), operating system (OS), video servers through a HTTP-level redirection. We also developed a prototype, added

different video servers into the prototype, and measured its overheads.

Key Words : Multimedia System, Video Server, Parallel Processing, LVS, DNS, CDN

1. Introduction

The multimedia transmission has been widely used as
real-time and digital broadcasting, distance learning, multi-
media mail, Internet Protocol Television (IPTV) and Voice
over IP network (VoIP) have significantly increased. In ad-
dition, a network capacity has increased enough to simulta-
neously transmit contents to various clients. With these
trends, Internet video servers have widely spread.

When using a video server for multimedia transmission,
if the total bandwidth used by clients exceeds the network
bandwidth of the server, the server cann't transmit more
contents through the overused network interface of the

+
++

£l oxt HN
Tow
Prrie e
N
o
=
?_(,

server. When a central processing unit (CPU) is overused,
the server cann't accept more connections, process more
requests or transmit more contents. In other words, net-
work and CPU resources restrict the transmitting capacity
of a video server. Using a single server, it costs a lot to
extend either network or CPU capacity. A single server
cann’t handle a failure. For example, if the server fails, all
of its services would be terminated because there are no
available servers. Consequently, a single server approach
has limitation in capacity, scalability, availability, fault tol-
erance and cost efficiency aspects.

Paralle] processing technologies, which consist of video
servers that provide real services and a load balancer that
provides a request-routing service, can overcome this
limitation. Request routing, sometimes referred to as re-
quest distribution, plays the role of distributing a client re-

16 YEXMEIES=ZKI A HM14-AF KI1=(2007.2)

quest to a suitable server. Many researchers have studied
request-routing mechanisms, which have been developed at
various levels such as client [1], DNS [2)], transport layer
(Layer 4) or below [3, 4, 5, 6, 7, 8], and application layer
(Layer 7) [9].

However, most request-routing mechanisms have the
common weakness that the same content must be copied to
all of the servers because these mechanisms cann'’t recog-
nize the requested content. Although the storage capacity
has increased, storing the same contents on all of the serv-
ers is the waste of storage especially for a multimedia sys-
tem because the sizes of video files are huge. In order to
minimize the unnecessary waste, content-aware request
routing can be used. The content-aware request routing
distributes different contents to each server and routes the
client requests to the server with the requested content.
Besides the storage waste, storage scalability can be also
achieved through the content-awareness. When a new
storage is added into a multimedia system and a re-
quest-routing system has the contents information in the
newly added storage, the multimedia system can immedi-
ately begin streaming the contents. The content-awareness
can also support session integrity, sophisticated load bal-
ance, and differentiated services [10].

Although some request routing mechanisms support the
content-awareness at layer 4, it is difficult for them to be
virtually used because of their limited OS support or com—
plex processes (That will be discussed later). Layer 7 tech-
nologies don't support simultaneously various video servers
because the technologies were developed for a single video
server product. For example, when a Microsoft Windows
Media Server is used for building a parallel multimedia
system, Real network’s Helix Universal Server isnt al-
lowed to operate cooperatively with the Media Server. As
available video servers, many commercial servers such as
Microsoft Windows Media server, Real network’'s Helix
Universal server, and Apple’s Darwin streaming server as
well as research prototypes such as Tiger {11] and SPIFFI
[12] exist. These varieties made an administrator select one
of video servers.

To support a content-aware routing to heterogeneous
video servers, we designed a simple architecture that used
the redirection through a web server. We developed a pro-
totype and added different servers and measured the
overheads.

Section 2 describes various related works by other
researchers. Section 3 describes the architecture and the
implementation. Section 4 describes the processes of adding
heterogeneous servers into the implementation and the

overheads. Section 5 concludes.

2. Related Works

This section describes the parallel processing tech-
nologies such as LVS, DNS, TCP splicing and TCP handoff
in addition to the network technologies such as CDN and
OpenCDN, which can be used to build a parallel multimedia
system.

2.1 Linux Virtual Servers (LVS)

The Linux Virtual Server (LVS) is a software tool that
supports load-balance among multiple Internet servers.
LVS supports three different redirecting methods: Network
address translation (NAT), IP tunneling and direct routing.

In LVS via NAT, when a load balancer receives a user
request, it selects a real server, rewrites the destination ad-
dress of a request IP packet to the real server IP address,
which can be within a private or public network, and for—
wards the modified packet to the dynamically selected
server. After the real server receives the packet, processes
it and sends the response IP packet to the load balancer,
the load balancer changes the source address of the re-
sponse packet to the load balancer's address (VIP). The
user then transparently receives the packet from the load
balancer.

In this method, real servers can run any OS with
TCP/IP, can use private IP addresses, and the load balancer
needs only an IP address. However, it is limited because
the load balancer bottlenecks. The performance cann’t be
scaled because all request and response packets pass
through the load balancer.

In LVS via IP tunneling, a load balancer creates a new
IP datagram that encapsulates the original datagram by us-
ing IP tunneling technology. It then forwards the new da-
tagram to the dynamically selected server. After the real
server receives the packet and decapsulates and processes
it, the real server returns the replies directly to the user
while maintaining the original VIP.

In this method, real servers can be on different network
from the director, and a director doesn't become a
bottleneck. However, the OS of a real server should support
IP tunneling. Some OS need to do complex processes such
as a kernel patch in order to support IP tunneling. In addi-
tion, even real servers need public IP addresses, and both a
director and real servers have the additional overheads of
IP encapsulation and decapsulation.

In LVS via direct routing, a load balancer adds only the
Medium Access Control (MAC) address to the request data

frame. It then forwards the new data frame to the dynam-
ically selected server. After the real server receives the
packet, and processes it, the real server retumns the replies
directly to a user.

In this method, the real servers and a director doesn't
have IP tunneling overheads. However, the LVS via direct
routing is limited in that the load balancer and real servers
should be connected within a single physical network. In
addition, the real servers should have network interface
that doesn't do an Address Resolution Protocol (ARP) re-
sponse so that it can avoid network IP address collision,
and even real servers also need a public IP addresses.

In addition to these drawbacks, the three supported rout-
ings don't support a content-awareness, which is especially
important for a multimedia system.

22 Domain name service (DNS)

A Round-Robin DNS extends a general DNS to provide
a load balance by mapping a domain name to several IP
addresses and returning one of the addresses. If a client
makes a name resolution request to the Round-Robin DNS,
the DNS returns an IP address in a sequential manner.
Although a clustering system can be built through the
Round-Robin DNS simply by editing the configuration file
of DNS software, it cann't realize fault tolerance because it
unconditionally returns an IP address without checking the
status of a server. In addition, the intermediate DNS server
between a client and the Round-Robin DNS server can
cache the IP address mapped to a domain name differently
from the Round-Robin DNS, which leads to fail to equally
balance loads. Besides these fault-tolerance and load-bal-
ance problems, the clustering system using DNS doesn't
support the content-awareness.

2.3 Other TCP layer approaches

The approaches mentioned above are in use and can be
used for a cluster system. Other approaches such as TCP
splicing [7] and TCP handoff [8] exist and are integrated
into some research prototypes that support content-aware-
ness at the TCP layer (Layer 4).

TCP splicing optimizes the front-end relaying algorithm
by integrating the address—changing mechanism of a re-
quest and a response into a kernel. Although TCP splicing
improves the front-end relaying by removing the copying
and context-switching overheads, it requires modification
of a front-end kernel, and the front-end system frequently
bottlenecks.

In the TCP handoff mechanism, the back—-end replies di-
rectly the results to a client without passing through the

DICIO) ZIe: HTTP 2iCiaids S5 83 HEDIDIH AJAd 72 17

front-end, and the client acknowledges the reply by send-
ing it through the front-end to the back-end. Although
TCP handoff improves the performance of TCP-splicing by
directly returning results and integrating the mechanism
into the kernel, the kemels of both the front and back-end
systems must be modified [13].

These two approaches commonly support the con—
tent—awareness at layer 4 in the kemel. However, they are
only supported by limited OS such as Linux and FreeBSD
[14, 15}, and it is difficult to newly implement them in the
kernels of various OS.

24 Content delivery network (CDN) and OpenCDN

CDN, a technology that was originally developed for
World Wide Web (WWW), places servers (sometimes
called as replicas or surrogates) and distributes contents to
the servers. Clients are served by the servers according to
policies such as network proximity, geographical proximity,
and response time.

CDN has the sub elements such as origin servers, surro-
gate servers, distribution systems, request—}outing systems
and accounting systems. Origin servers have contents that
are created by content providers and are delivered to clients
or surrogate servers. Surrogate servers are servers that
provide users with real services on behalf of origin servers.
A distribution system distributes content to surrogate serv-
ers when the surrogate servers anticipate a client to re-
quest the contents, push, or a client makes a request to the
surrogate server, pull. A request-routing system redirects a
client request to a surrogate server. An accounting system
records hoth the contents distribution to the surrogate
servers and transmission activities to clients. A distribution
system interacts with a request-routing system in order to
notify content availability and interacts with an accounting
system in order to notify the content distribution. A re-
quest-routing system interacts with a distribution system
in order to notify the content demands so that the dis-
tribution system can place contents in the suitable surro-
gate servers. A request-routing system interacts with an
accounting system in order to notify contents distribution
so that the accounting system can record the distribution.
An accounting system uses the collected information for a
bill. [16]

OpenCDN 1is an open CDN implementation that supports
vendor—independence and scalable delivery of live stream-
ing content to large audience.

OpenCDN, which consists of relay nodes that perform
content delivery, a portal that is the contact point of clients,
and request-routing and Distribution Management (RRDM)

18 FEMLSR=EX A M14-AH M1=(2007.2)

4, Communicate directly with the video server

1. Make a content request

}

Video server 1

Client R
(Web browser,

Dispatcher

Video

. 1. Periodically monitor the servers
server monitor

Contents player) |

3. Create a page that redirects the client
o the returned video server

2. Return a server with the least network overload
and the content

2. Save the monitored results

Database

Video server 2

Video server 3

(Figure 1) Overall architecture and processes

that records footprint information from nodes, chooses a
relay node by a client request, creates a distribution tree
and dismantles the distribution tree after transmission ends.
In other words, a relay node acts as a surrogate server and
a RRDM acts as a request-routing and distribution system
of CDN. Whenever a node boots, the node registers its ca-
pabilities and footprint information with the RRDM.
Whenever a client contacts an announcement portal, the
portal passes the request to the RRDM through XML-RPC
[17]. The RRDM chooses the best relay, creates a dis—
tribution tree and returns the Uniform Resource Identifier
(URD to the portal. If the selected relay doesn’'t have the
requested content, it pulls the stream from the source. The
portal generates a page that redirects the client request to
the returned relay node. After the requesting client finishes
watching the content, the RRDM dismantles the dis-
tribution tree.

The nodes in the distribution tree are classified as
FirstHop (FH), Transit (TR) and LastHop (LH) from the
least to the most specific footprint. A FH relay has the
widest footprint and is the first point for delivering the
content. A transit relay distributes the content from the FH
relay or TR relays to the other transit relays or the LH
relay. The LH relay finally delivers the content to the cli—
ents [18]. RRDM doesn’t have to be related to deliver con-
tents to a client, so it reduces RRDM overheads.

OpenCDN supports vendor-independence by adding a
new adaptation layer that creates a direct request to the
streaming or video servers that are installed on relay
nodes.

3. Architecture and Implementation

This section describes the architecture and the im-
plementation for supporting content-awareness, load-bal-
ance and fault-tolerance as well as exploiting various
servers.

3.1 QOverall architecture

The overall architecture and processes are demonstrated
in Figure 1.

This architecture consists of a client, a dispatcher, a
video server monitor, a database, and video servers. A
client is used to watch the contents, and it must have both
the web browser and the suitable players according to the
video servers. A dispatcher is the client’s contact point and
is implemented using a dynamic web page executed by a web
server. A video server monitor periodically monitors video
servers and saves the monitored results on the database
server. A database records the server information, the
monitored status of video servers, and the contents in-
formation of video servers. A video server streams con-
tents by unicast, multicast or broadcast methods.

The service processes are summarized as follows.
Whenever a client makes a content request to a dispatcher,
the dispatcher retrieves the video server with both the least
response time and the requested content from the database.
It then retrieves the URI to the content in the video server.
The dispatcher returns the status code 302 that redirects
the web browser on the requesting client to the URI After
receiving the new location, the web browser automatically

opens the suitable player, which makes a request to the
video server located by the returned URI, and starts play-
ing it. We adopted the least response time scheduling be-
cause network delay was considered as a more general
limitation than CPU.

The architecture redirecting through a HTTP web server
can be used as a CDN. A dispatcher system is similar to
the CDN request-routing system in that the dispatcher
system redirects a client to the suitable server. A database
server is similar to the accounting system because the da-
tabase records the distribution of contents and includes the
transmission records. A video server can also be recognized
as the surrogate server of a CDN because it provides a real
service. When we use this architecture as a CDN, we have
no automatic distribution system at the writing time. From
this perspective, our architecture and processes can be seen
as one of CDN implementations that redirect at the applica-
tion level according to the given URI with the least re—
sponse time scheduling.

The architecture is similar to the OpenCDN architecture
because the dispatcher acts as a portal and an RRDM, and
a video server plays the role of a relay node. This request
routing is also similar to that of OpenCDN because both
commonly operate at the application level. However, the ar-
chitecture differs from the OpenCDN architecture because
this architecture has no distribution system, doesn't create
a distribution tree, doesn’t dismantle it, and doesn’t register
a node to the dispatcher system.

These architecture and processes have the advantage
that any video servers can be added into the clustering
without modification or addition because it doesn’t have a
registration process, or a distribution tree, and it doesn't
need to change a server setting or newly implement an
adaptation layer. The added server operates cooperatively
with other video servers as far as both players and a web
browser with the capabilities of both HTTP connection and
redirection are installed on the requesting client. It provides
fault tolerance because the video server monitor monitors
video servers and avoids scheduling a failed server. It also
provides load balance because a dispatcher system redirects
the client to the video server with the least response time.
It also supports global environments because both the dis-
patcher and video servers don't have to be connected with—
in a single physical network.

This architecture supports content-awareness, which al-
lows contents to be freely distributed to any servers as far
as the database records the location. The content-aware-
ness is enabled by the database mapping the logical URI to
the physical URL. Whenever a client makes requests to the

DICIO] ZRIS: HTTP 2ICIME 5 @3 ZEDICIO AL"> 72 19

dispatcher with video ID (logical ID), the dispatcher re-
trieves the physical URI of the video ID from the database
and returns the URI to the requesting client with the 302
redirection code.

However, the architecture has more startup time over-
heads than low level (L4) request-routings discussed in
Section 2.1, Section 2.2, and in Section 2.3. Whenever a cli-
ent makes a content request to the dispatcher, the dis-
patcher reads information on the server status from the da-
tabase server, returns the status code that makes a web
browser execute the player that can watch the content, and
the player makes a direct request to the scheduled server.
These processes delay the time of starting the content.
Another problem is that all streaming services can be stop-
ped due to the dispatcher failure. If the dispatcher stops its
service, all of new requests would be failed because the
dispatcher is the only contact point of all clients at the
writing time. Besides the start time overheads, and the dis-
patcher failure problem, the dispatcher can be bottleneck
because all of the requests pass through the dispatcher.
However, this bottleneck problem is minimized because the
video server replies directly to the client and the dispatcher
doesn't participate in the streaming process. These draw-
backs are related to our goal not to minimize overheads for
broadcasting but to develop a flexible architecture for the
various servers and content-awareness. In addition, the
dispatcher failure problem, and the bottleneck problem are
common problems among all of the centralized dispatcher
approaches.

3.2 Implementation

We developed the aforementioned architecture and proc-
esses to verify its practicality. We used the IIS 5.0, the
Windows 2000 Server patched by service pack 4 for devel-
oping the dispatcher, the Visual Basic 6.0 patched by serv-
ice pack 6 for developing the video server monitor, and the
Microsoft SQL server 2000 patched by service pack 4 as a
database.

3.2.1 Dispatcher

A dispatcher is implemented as a dynamic web page that
uses Active Server Page (ASP). After the dispatcher re-
trieves the requested content and the least response time
server from the database, the dispatcher generates the sta-
tus code 302 that redirects the web browser on the client to
the selected server. The web browser realizes that it cann't
process the returned content, opens the player supporting
the content, the executed player directly makes a request to
the content, and starts playing the content.

20 FRHMe(Ss=E2XA M14-AH RM1=(2007.2)

{Table 1) Tables for the architecture

Name Description
CODEMAST This table includes the classification information.
CLIENT_STAT This table includes the client status information.
VIDEO_INFO This table includes the video information.
VIDEO_LEVEL This table includes the video classification information.
PLAY_INFO This table includes the play information by clients.
FILE_INFO This table includes the file information.

FILE STAT This table includes the file usage information.
SERVER_INFO This table includes the video server information.
SERVER_STAT This table includes the server status information.

The dispatcher could be created by using any mecha-
nisms such as Java Server Page (JSP), Common Gateway
Interface (CGI) or PHP that could access the database.
However, we chose ASP because it was the basic dynamic
page mechanism supported by a Windows server.

3.2.2 Video Server Monitor

A video server monitor periodically retrieves the video
server information from the database, gains response times
from the retrieved video servers and stores the information
to the database. We used the Visual Basic 6.0 for develop—
ing the video server monitor. The monitoring time could be
modified when the video server monitor starts and is basi-
cally 10 seconds in the case of no inputs.

To measure the response time, we used the IP helper
functions [19] that could be accessed from the Visual Basic.
The response time is measured by both the ICMP echo re-
quest and ICMP echo reply and is the same as Ping's
round trip time. The usage of ICMP messages removed the
necessities of developing another server daemon because
most of the OS support the TCMP protocol.

3.2.3 database

A database stores the managed video servers, the URI of
contents that the video servers support and the response
times of video servers. The database can be from any
vendors as far as it has basic mechanisms to create a table,
store data into the table, retrieve them, and support the re-
trieving mechanism from the dispatcher.

We created the tables in Table 1 in order to realize the
architecture in Section 3.1.

When a video server is added into the architecture, the
information should be added into SERVER_INFO table so
that the video server monitor can recognize the server. The
video server monitor inserts the response time information
into SERVER_STATE table. When a manager adds con-
tents to one of video servers, contents information should

be inserted into FILE_INFO and VIDEO_INFO. When in-
serted, the dispatcher recognizes the added contents, and
clients can watch the content. The FILE STAT,
PLAY_STAT and CLIENT STAT tables are used for
statistics. This information can be used to generate a report
on content usage. Both CODEMAST and VIDEO_LEVEL
tables are used as reference tables for filling the
VIDEO_INFO and FILE_INFO tables.

4. Results

This section describes the experience that adds the
Microsoft’'s Windows Media Server and the Real network’s
Helix Universal Server 9.07 to the developed prototype.
This section also shows the comparison table and the
start-up overheads.

4.1 Video server

In order to add the Media Server rumning on the
Windows 2000 server, we added its IP address into a
SERVER_INFO table. A video server monitor immediately
recognized the server addition and started measuring the
response time by ICMP messages every 10 second and
storing the result in the SERVER_STATE table. The con-
tents information was added into the FILE_INFO and the
VIDEQO_INFO tables. Whenever a user contacted the dis-
patcher, the dispatcher retrieved the server with both the
least response time and the requested content, and returned
the status code 302 to the new URL The web browser exe-
cuted the suitable player that made a request to the new
URI, and played the content.

We also added the Helix Universal Server 9.07 running
on Solaris 5.9 as an entirely different environment following
the same procedures. In this way, a video server could be
any PC, Workstation, Mainframe, or OS that has the capa-
bility of running a video server. This is because the

OICIOT Zlg: HTTP cIC=idg &8 HE ZEDICIO Al2" 2 21

{Table 2> Problems

. LVS via | LVS via

Erblems D | B NS | 0N |
Dispatcher bottleneck O A A X O A A A
dtpteher i sweaing| . : X ° 8 X X
Single network X X O X X X X X
Another network interface X X o X X X X X
Load unbalance X X X o ? ? ? X
Fault untolerance A A A O ? ? ? X
v semars | X X X X X X ° X
OS modification X A X X O 0 X X
Content unawareness O] O o] X X ? X
Startup overheads A A A A A A o} O
Heterogeneousness o O O o O 0 A X
Public IP address X O O o X O o} O

SERVER_INFO table includes the IP addresses, and most
of OS support the standard ICMP protocol. The other rea-
sons are that both the VIDEO_INFO and the FILE_INFO
tables include the URI that all of the video servers have,
and the client is redirected through a web browser and a
web server.

4.2 Client

To watch the contents, we installed hoth the Media
Player 100 and RealPlayer 105, which was run on
Windows XP patched by service pack 2. In this way, the
suitable players should be installed according to the con-
tents and the video servers.

4.3 Comparison

Before this subsection, many request routing techniques
are described and HTTP redirection technique is proposed
for building a parallel multimedia system. This subsection
compares the described techniques for understanding.

Table 2 shows the described problems and request rout-
ing techniques till now. Dispatcher bottleneck problem
means that the bottleneck can happen at the dispatcher,
sometimes called as load balancer, director, front-end, or
portal. Single network problem means that the dispatcher
and video servers should be connected within a single
physical network. Another network interface problem
means that a video server should have another network
interface. Load unbalance problem means that the loads of

video servers mayn't be equally balanced and fault un-
tolerance problem means that the failure of a video server
can lead to the entire service failure. Additional im-
plementation problem on video servers means that a video
server requires new implementation in order to participate
in the clustering. OS modification problem means that the
OS of the dispatcher, or video servers should be modified.
Content unawareness problem means that the distribution
isn't free according to the contents. Startup overheads
problem mean the overheads when starting a service.
Heterogeneousness problem means that various video serv-
ers cann't operate at the same time. Public IP address
means that the video servers should have public IP address.
O means the technique has the problem, A has the little
problem, X doesn't have the problem, and ? means that it
isn't exact due to data shortage.

Dispatcher bottleneck problem is common to LVS via
NAT, and TCP hand off because all of the requests and
responses pass through dispatcher, but only the requests
pass through the dispatcher at the other techniques (LVS
via IP tunneling, LVS via direct routing, TCP splicing) or
the request passes through the dispatcher only when
starting (OpenCDN, HTTP redirection). Interruption
overheads problem is caused by the dispatcher invention
during streaming processes. During streaming content, the
dispatcher should change IP address (LVS via NAT, TCP
handoff), MAC address (VS via direct routing), or creates
IP tunnel (LVS via IP tunneling). Fault untolerance problem

22 FEXelSB=ZXA MI14-AR M13(2007.2)

is caused by not monitoring video servers. Additional im-
plementation or some OS kernel modification is required by
some techniques, which disable all OS to participate in the
clustering. Content unawareness problem is common to
most of the techniques because they are originally devel-
oped for a web clustering that content size is small and
content duplication isn't a big problem. Startup overheads
problem is caused by the initial time to change IP address
(LVS via NAT, TCP handoff), MAC address (LVS via di-
rect routing), create IP tunnel (LVS via IP tunneling), cre-
ate a distribution tree (OpenCDN), or retrieve the suitable
server (HTTP redirection). Heterogeneous video servers
are supported by HTTP redirection, but OpenCDN requires
implementing an adaptation layer.

4.4 Performance

We added the redirection through a web browser and a
web server into the streaming processes, which had no
choice but to increase the start-up overheads. Table 3
shows the delayed start-up times for supporting the con-
tent-awareness and heterogeneous servers with media
server and media player. Video server is the Windows
Media Server with Windows 2000 server, Pentium 4 2.0
Ghz, and 512 MByte RAM and client is the Media Player
10.0 with Mozilla FireFox 1.5.0.7, Windows XP, Pentium 4
1.7 Ghz, and 512 MByte RAM.

The average start-up time without any redirection was
2.3 seconds. The time reduced from 8 seconds to 1 second
as the test continued and the reduction was thought to be
a cache effect. The average start-up time with redirecti:)n
through a web server and a web browser was 6 seconds.
The approximate 4 seconds difference occurred because the
client web browser contacted the dispatcher, the dispatcher
retrieved the least response time server with the content
from the database, and the client web browser opened the
player that was able to watch the returned content.

(Table 3) Start-up times
General System

Dispatcher redirection system
8

—_ == ===]| oo
(o2l eyl [O) i IS RSN IR B e 0N BEN [N o'

5. Conclusion and Future works

As multimedia transmission increases, a single server
approach exposes problems that it has limited capacity,
costs a lot, and cann't handle a service failure. These prob-
lems have activated the use of the parallel processing ap-
proaches with LVS, DNS, TCP splicing, TCP handoff and
OpenCDN. However, these approaches have their own
problems. LVS sometimes bottlenecks, needs to pass
through complex processes, and needs to connect a director
and real servers within a single physical network. DNS
cann’t support fault-tolerance, and sometimes load-balance.
These approaches commonly require the duplication of con~
tents on all servers because these low-level approaches can
only see the IP packet, so they cann't redirect a client to a
suitable server according to contents. Content-awareness is
especially important for a multimedia system because its
content sizes are huge. Both TCP splicing and TCP handoff
need to modify the kernels that aren’t allowed in some OS.
OpenCDN requires implementing a new adaptation laYer to
add a new video server. Besides this request routing prob-
lems, too many commiercial products and prototypes have
been developed as video servers that can be used with
these aforementioned request routing approaches. These
varieties caused situations that some servers are incompat-
ible with the other servers, a user who wants to build a
parallel multimedia system must select the best server
product after experiments, and all clients must install the
suitable player. In summary, it is difficult for already exist-
ing request routings to be used due to their own problems
and the variety of video servers makes the matters worse.

The described redirecting mechanism through a web
browser and a web server can support any video servers
regardless of the vendors at the cost of approximate 4 sec-
onds because all requests pass through the dispatcher that
is implemented using a dynamic web page operated by a
web server. It doesn’t bottleneck because the dispatcher
doesn’t participate in transmitting contents, can easily add
new servers by adding both server and content information
into the database, doesn’t need to connect a dispatcher and
video servers within a single physical network, and sup-
ports both load balance and fault tolerance through mon-
itoring the video servers. Our goal wasn’t to minimize the
overheads but to solve the heterogeneity problems without
modification while, at the same time, solving the con—
tent-unawareness problem that remains unsolved by the
various redirecting methods: LVS, DNS, TCP splicing, TCP
handoff and OpenCDN.

To the best of our knowledge, the described architecture

is the first parallel multimedia system architecture that the
web browser on the client makes a request to the web
server, the web server returns the 302 status code with the
new URL the web browser executes the suitable player,
and the player communicates with the returned server. We
are currently adding other schedulings besides the least re~
sponse time scheduling, developing an intelligent dis-
tribution system according to the content popularity, and
developing a new architecture that has the other dispatcher
systems in order to solve the fault tolerance problem at the
dispatcher system. Lastly, we believed that the described
architecture was worth in that it first used HTTP re-
direction for content-aware routing to heterogeneous video
Servers.

References

[11 C. Yoshikawa, B. Chum, P. Eastham, A. Vahdat, T. Anderson
and D. Culler, “Using smart clients to build scalable
services”, Proceedings of the USENIX 1997 Annual
Technical Conference, Jan., 1997.

[21 T. Brisco, “DNS Support for Load Balancing”,
http://rfc.net/rfc1794.html, Apr., 1995.

[3] “The Linux Virtual Server Project - Linux Server Cluster
for Load Balancing”, http://www linuxvirtualserver.org/.

[4] W. Zhang, S. Jin and Q. Wu, “Creating linux virtual servers’,
Proceedings of LinuxExpo Conference, May, 1999.

[5] W. Zhang, “Linux virtual server for scalable network
services”, Proceedings of Ottawa Linux Symposium, Jul,
2000.

[6] P. O. Rourke, M. Keefe, “Performance evaluation of linux
virtual server”, Proceedings of LISA Conference, pp.79-92,
Apr., 2001.

[7] A. Cohen, S. Rangarajan and H. Slye, “On the performance
of TCP Splicing for URL~Aware Redirection”, Proceedings
of the 2nd USENIX Symposium on Internet Technologies
and Systems, Boulder, CO, USA, Oct., 1999.

[8] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel and E. Nahum, “Locality-Aware Request
Distribution in Cluster-based Network Servers”, Proceedings
of the 8th ACM Conference on Architectural Support for
Programming Languages and Operating Systems, San Jose,
CA, USA, Oct., 1998.

OICI0 =Y HTTP 2Ll e S0 8 HEDICI0] AIAE 72 23

(9] D. Andresen, T. Yang, V. Holmedahl and Q. Ibarra, “SWEB:
Towards a Scalable World Wide Web Server on
Multicomputers”, Proceedings of 10th IEEE International
Symposium on Paralle] Processing (IPPS), pp.850-856. Apr.,
1996.

{101 C. S. Yang and M. Y. Luo, “Efficient support for
content-based routing in web server clusters”, Proceedings
of the 2nd USENIX Symposium on Internet Technologies
and Systems, Oct., 1999.

[11] W. J. Bolosky, J. S. Barrera I, R. P. Draves, R. P. Fitzgerald,
G. A. Gibson, M. B. Jones, S. P. Levi, N. P. Myhrvold and
R. F. Rashid, “The Tiger Video Fileserver”, Proceedings of
the Sixth International Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV),
Zushi, Japan, pp.97-104, Apr., 1996.

[12] C. S. Freedman, D. J. DeWit, “The SPIFFI scalable
video-on-demand system”, Proceedings of the 1995 ACM
SIGMOD international conference on Management of data,
San Jose, CA, USA, pp.352-363, May, 1995,

[13] M. Aron, D. Sanders, P. Druschel and W. Zwaenepoel,
“Scalable
Cluster-based Network Servers”, Proceedings of the
USENIX 2000 Annual Technical Conference, San Diego, CA,
USA, Jun., 2000.

[14] “TCPHA project”,
http://dragon linux-vs.org/ dragonfly/htm/tcpha.htm.

[15] “TCPSP Software”,
http://www linuxvirtualserver.org/software/tcpsp/
index.html.

[16] M. H. Kabir, E. G. Manning and G. C. Shoja, “Request-
routing trends and techniques in content distribution
network”, Proceedings of ICCIT, Dhaka, Bangladesh,
pp.315-320, Dec., 2002.

[17] “XML-RPC Specification”, http://www.xmlrpc.com/spec.

[18] A. Falaschi, “Open Content Delivery Network Short Overview”,
http1//lébtel.ing.uniromal.it/opencdn/tn02004.pdf, 29 Jun.,
2004.

[19] Microsoft, “IP Helper Functions”,
http://msdn.microsoft.com/library/default.asp?url=/library/

Content-aware Request Distribution in

en-us/iphlp/iphlp/ip_helper_functions.asp.

24 FEHMEEI=FX A M14-AT H1=(2007.2)

4 4 7|
e-malil : ditoman@chollian.net
20008 AT FFEF A
20021 ~2007d AEiete A7 %H
FHR AT
TAEoE: §, HEuto], BB A,
Het &

s o4 4

e—mail : syhan@pplab.snu.ac.kr

1972 A2 ggta FHdE 48
(&

19773 Agoishal AA st s dakst
(HAh

1983wl dApAtiEa (L2F)
A (A}

19773 ~19789 &g Fooish A3t

198413 ~19883 Mgt ALFASH 2us

19883 ~1993'd A-goista ANEATH Fus

19939 ~3A Agdda ANEASH 2F

BAEk: WE A, Het

