Development of $^{192}Ir$ Small-Focal Source for Non-Destructive Testing Application by Using Enriched Target Material

고농축 표적을 이용한 비파괴검사용 $^{192}Ir$ 미세초점선원 개발

  • Published : 2007.02.28

Abstract

A $^{192}Ir$ small-focal source has been developed by using the HANARO reactor and the radioisotope production facility at the Korea Atomic Energy Research Institute (KAERI). The small-focal source with the dimension of 0.5 mm in diameter and 0.5 mm in length was fabricated as an aluminum-encapsulated form by a specially designed pressing equipment. For the estimation of the radioactivity, neutron self-shielding and ${\gamma}-ray$ self-absorption effects on the measured activity was considered. From this estimation, it is realized that $^{192}Ir$ small-focal sources over 3 Ci activities can be produced from the HANARO. Field performance tests were performed by using a conventional source and the developed source to take images of a computer CPU and a piece of a carbon steel. The small-focal source showed better penetration sensitivity and geometrical sharpness than the conventional source does. It is concluded from the tests that the focal dimension of this source is small enough to maximize geometrical sharpness in the image taking for the close proximity shots, pipeline crawler applications and contact radiography.

하나로와 동위원소 생산시설을 활용하여 비파괴검사용 $^{192}Ir$ 미세초점선원의 생산기술을 개발하였고 현장적용시험을 통하여 개발된 제품의 성능을 확인하였다. 직경 0.5 mm ${\times}$ 높이 0.5 mm인 선원의 개발을 위해 알루미늄 캡슐 압착 방법 및 장치를 개발하여 표적을 제작하였으며, 하나로를 이용한 방사능 생성량을 평가한 결과 약 3.0 Ci 방사능의 선원 제조가 가능함을 확인하였다. 또한 컴퓨터 CPU 및 탄소강에 대한 비파괴검사를 실시하여 투과도계 감도 및 기하학적 불선명도가 비교 대상 선원에 비해 우수함을 확인하였다. 이 선원의 초점크기는 기존의 선원에 비해 매우 작기 때문에 근접 및 접촉촬영과 튜브-튜브시트 용접부의 비파괴검사에 있어 기하학적 불선명도를 최소화 할 수 있을 것이다.

Keywords

References

  1. H. S. Han. et al., 'Production of $^{192}Ir$ radiation sources using HANARO' (in Korean), Radioisotope News, Vol. 13, No.1, pp. 23 (1998)
  2. H. S. Han, W. K. Cho, U. J. Park, Y. D. Hong and K. B. Park, 'Current status and future plan for the production of radioisotopes using HANARO research reactor,' Journal of Radioanalytical and Nuclear Chemistry, Vol. 257, No.1, pp. 47-51 (2003) https://doi.org/10.1023/A:1024732907316
  3. H. S. Han. et al., 'Development of radioisotopes and radiation sources,' KAERl/RR-2349/2002
  4. K. J. Son, J. S. Lee, U. J. Park, S. B. Hong, K. S. Seo and H. S. Han, 'Development of miniature radiation sources for medical and non-destructive testing applications, IAEA CRP meeting on development of radioactive sources for emerging Therapeutic and Industrial Applications,' Vienna, 2005
  5. 이성식, 김영환, 'Tangential Radiography를 이용한 배관의 두께 평가법', 한국비파괴검사 학회지, 제18권 3호, pp. 205-210 (1998)
  6. Hisashi Katoh et al., 'Production of radioisotopic gamma radiation sources in JAERI,' JAERI/M-8810(1980)
  7. J. Gilat and Y. Gurfinkel, 'Self-shielding in activation analysis,' Nucleonics, Vol. 21, No.8, pp. 143 (1963)
  8. W. K. Cho, 'Development of Ir-192 brachytherapy sources for medical uses,' KAERI Report (1996)
  9. R. E. Nisle, Nucleonics, Vol. 18, No.3, pp. 86 (1960)
  10. S. Enomoto, T. Onodera and H. Kato, 'Gamma-ray self-absorption of $^{192}Ir $ radiographic source,' J. of Japanese Nuc. Soc., Vol. 12, No.4, pp. 176 (1970)
  11. W. R. Dixon, 'Self-absorption correction for large gamma-ray source,' Nucleonics, Vol. 8, No.4, pp. 68 (1951)
  12. 'Nondestructive testing overview,' Nondestructive Testing Handbook, Second Edition, Vol. 10, ASNT, (1996)