Hidden Porphyry-Related Ore Potential of the Geumseong Mo Deposit and Its Genetic Environment

금성 몰리브데늄광상의 잠두 반암형 광체에 대한 부존가능성과 성인적 환경

  • 최선규 (고려대학교 지구환경과학과) ;
  • 박정우 (고려대학교 지구환경과학과) ;
  • 서지은 (고려대학교 지구환경과학과) ;
  • 김창성 (고려대학교 지구환경과학과) ;
  • 신종기 (대한광업진흥공사) ;
  • 김남혁 (대한광업진흥공사) ;
  • 유인걸 (대한광업진흥공사) ;
  • 이지윤 (고려대학교 지구환경과학과) ;
  • 안용환 (고려대학교 지구환경과학과)
  • Published : 2007.02.28

Abstract

The Guemseong mine is located near the southern margin of the Jurassic Jecheon granitoids collectively with the Cambro-Ordovician mixed dolostone-limestone series of the Yeongweol Group, Choseon Supergroup. Here, two spatially distinct types of skarn formation have been observed. The upper transitional skarn is the calcic Mo skarn which has the mineral assemblage of $garnet+hedenbergite+epidote{\pm}wollastonite{\pm}magnetite{\pm}hematite{\pm}amphibole{\pm}chlorite{\pm}vesuvianite$ within the calcite marble. On the other hand, the lower proximal skarn occurs as a discordant magnesian Fe skarn at the contact of Mo-bearing aplitic cupolas with unidirectional solidification texture(UST) within the dolomitic marble. The magnesian Fe skarn has the mineral assemlage $olivine+diopside+magnetite+tremolite+serpentine+talc+chlorite{\pm}phlogopite$. The formation of two different types of skarn and ore mineralization in Geumseong mine have been attributed to multistage and complex metasomatic replacements that ultimately resulted in silicate-oxide-sulfide sequence of metasomatism. An early prograde stage with anhydrous skarn minerals such as olivine, clinopyroxene and/or garnet with magnetite, formed from high temperature (about $500^{\circ}\;to\;400^{\circ}C$) at an environmental condition of low $CO_2$ fugacity ($XCO_2<0.1$) and 0.5 kbar. The later retrograde stage with hydrous silicates such as amphibole, serpentine, phlogopite, epidote and chlorite with molybdenite or hematite, termed from relatively lower temperature (about $400^{\circ}\;to\;300^{\circ}C$).

금성광상은 캠브리아기-오르도비스기 조선누층군 중 영월층군의 탄산염암과 쥐라기 제천화강암체와의 남측 경계부를 따라 백운석질 석회암과 석회암의 조성차이를 반영하여 서로 다른 유형의 스카른대가 배태되고 있다. 금성광상에서 스카른화작용은 전반적으로 규산염광물-산화광물-황화광물이 순차적으로 교대-정출되는 특징을 보이고 있으며, 공간적으로 상부 스카른에 배태된 점이성 스카른형 Mo광상과 하부 스카른에 배태된 근지성 스카른과 함께 수반되는 단방향 결정성장조직의 큐폴라형 Mo광상으로 양분된다. 금성광상의 상부 스카른대는 휘수연석${\pm}$자철석${\pm}$적철석과 함께 석회암이 교대된 Ca계열 스카른광물인 석류석+단사휘석+녹렴석+양기석+녹니석${\pm}$규회석${\pm}$사장석${\pm}$베스비아나이트의 광물조합을 보이고 있는 반면, 하부 스카른대는 자철석과 함께 백운석질 석회암이 교대된 Mg계열 스카른광물인 감람석+투휘석+투각섬석+금운모+사문석${\pm}$고니석${\pm}$활석으로 구성되어 있다. Ca계열 및 Mg계열 스카른광물의 공생관계 및 열역학적 자료를 종합적으로 검토한 결과, 전진 스카른 단계 스카른화 작용은 약 0.5kbar, $XCO_2<0.1$의 조건의 약 $500^{\circ}{\sim}400^{\circ}C$ 온도범위에서 진행되었으며, 후퇴 스카른 단계 함수규산염광물의 안정영역은 약 $500^{\circ}{\sim}400^{\circ}C$ 온도범위로 추정된다.

Keywords

References

  1. Carten R.B., White, W.H. and Stein, H.J. (1993) High-grade granite-related molybdenum system: Classification and origin. In: Kirkham, R.Y., Sinclair, W.D., Thorde, R.I. and Duke, J.M. (eds.) Mineral deposit modeling. Geol. Asso. Canada Spec. Paper, v. 40, p. 521-554
  2. Cho, D.L. and Kwon, S.T. (1994) Hornblende geobarometry of the Mesozoic granitoids in South Korea and the evolution of crustal thickness. Jour. Geol. Soc. Korea, v. 30, p. 41-61
  3. Choi, S.-G., Pak, S.J., Kim, S.W, Kim, C.S. and Oh, C.W. (2006) Mesozoic gold-silver mineralization in South Korea: Metallogenic provinces reestimated to the geodynamic setting. Econ. Environ. Geol., v. 39, p. 567-581
  4. Choi, S.-G. (2006) Genetic environment of the Cretaceous subvolcanic magmatism and Mo mineralization in Korea. Korea Resource Corporation, 119p
  5. Gordon, T.M. and Greenwood, H.J. (1971) The stability of grossularite in H2O-CO2 mixtures. Am. Mineralogist, v. 56, p. 1674-1688
  6. Greenwood, H.J. (1967) Wollastonite: Stability in H2O-CO2 mixtures and occurrence in a contact metamorphic aureole near Salmo, British Columbia, Canada. Am. Mineralogist, v. 52, p. 1669-1688
  7. Harris, N.B. and Einaudi, M.T. (1982) Skarn deposits in the Yerington District, Nevada: Metasomatic skarn evolution near Ludwig. Econ. Geol., v. 77, p. 877-898 https://doi.org/10.2113/gsecongeo.77.4.877
  8. Ishihara, S., Jin, M. and Terashima, S. (2005) Mo-related adakitic granitoids from non-island-arc setting: Jecheon pluton of South Korea. Resource Geol., v. 55, p. 385-396 https://doi.org/10.1111/j.1751-3928.2005.tb00259.x
  9. Jin, M., Kim, S.J., Shin, S.C., Choo, S.H. and Chi, S.J. (1992) Thermal history of the Jecheon granite pluton in the Ogcheon fold belt, South Korea. Jour. Petrol. Soc. Korea, v. 1, p. 49-57
  10. Kim, K.W., Park, B.S. and Lee, H.K. (1967) Explanatory text of the geological map of Jecheon sheet, Geological survey of Korea, 46p
  11. Kim, J.C., Koh, H.J., Lee, S.R., Lee, C.B., Choi, S.J. and Park, K.H. (2001) Explanatory text of the geological map of Gangrueng-Sokcho sheet, Geological Survey of Korea, 76p
  12. Kirkham, R.Y. and Sinclair, W.D. (1988) Comb quartz layers in felsic intrusions and their relationship to porphyry deposits. In: Taylor, R.P. and Strong, D.F. (eds.) Recent advances in the geology of granite-related mineral deposits. Canadian Inst. Mining Metallurgy, v. 39, p. 50-71
  13. KORES (2006) Detailed geological survey report (molybdenite: Jaecheon area). Korea Resource Corporation, 100p
  14. Meinert, L.D. (1982) Skarn, manto, and breccia pipe formation in sedimentary rocks of the Cananea mining district, Sonora, Mexico. Econ. Geol., v. 77, p. 919-949 https://doi.org/10.2113/gsecongeo.77.4.919
  15. Moon, K.J. (1991) Review of skarn ore deposits at the southern limb of the Baegunsan syncline in the Tae-baeg Basin of South Korea. Jour. Geol. Soc. Korea, v. 27, p. 271-292
  16. Newton, R.C. (1966) Some calc-silicate equilibrium relations. Am. Jour. Sci., v. 264, p. 204-222 https://doi.org/10.2475/ajs.264.3.204
  17. Park, N.Y. (1982) Molybdenum mineralization, exploration and exploitation of the ore deposits at the Keumseong mine, Republic of Korea. Unpub. Ph.D. thesis. Japan, Waseda Univ., 188p
  18. Reedman, A.J., Fletcher, C.J.N., Evans, R.B., Workman, D.R., Yoon, K.S., Rhyu, H.S., Jeong, S.H. and Park, J.N. (1973) The geology of the Hwanggangri mining district, Republic of Korea. Anglo-Korean Mineral Exploration Group, 119p
  19. Shibata, K., Park, N.Y., Uchiumi, S. and Ishihara, S. (1983) K-Ar ages of the Jecheon granitic complex and related molybdenite deposits, South Korea. Mining Geol., v. 33, p, 193-197
  20. Slaughter, J., Kerrick, D.M. and Wall, W.J. (1975) Experimental and thermodynamic study of equilibria in the system CaO-MgO-$SiO_{2}$-O-$CO_{2}$. Am. Jour. Sci., v. 275, p. 143-162 https://doi.org/10.2475/ajs.275.2.143
  21. Steiger, R. and Jager, E. (1977) Subcommission on geochronology convension on the use of decay constants in geo- and cosmo-chronology. Earth Planet. Sci. Lett., v. 36, p. 359-362 https://doi.org/10.1016/0012-821X(77)90060-7