DOI QR코드

DOI QR Code

Capacitance Properties of Nano-Structure Controlled Alumina on Polymer Substrate

폴리머 기판위에 형성된 나노구조제어 알루미나의 캐패시터 특성

  • 정승원 (한국과학기술연구원 박막재료연구센터) ;
  • 민형섭 (한국과학기술연구원 박막재료연구센터) ;
  • 한정환 (인하대학교 신소재공학부) ;
  • 이전국 (한국과학기술연구원 박막재료연구센터)
  • Published : 2007.02.27

Abstract

Embedded capacitor technology can improve electrical perfomance and reduce assembly cost compared with traditional discrete capacitor technology. To improve the capacitance density of the $Al_2O_3$ based embedded capacitor on Cu cladded fiber reinforced plastics (FR-4), the specific surface area of the $Al_2O_3$ thin films was enlarged and their surface morphologies were controlled by anodization process parameters. From I-V characteristics, it was found that breakdown voltage and leakage current were 23 V and $1{\times}10^{-6}A/cm^2$ at 3.3 V, respectively. We have also measured C-V characteristics of $Pt/Al_2O_3/Al/Ti$ structure on CU/FR4. The capacitance density was $300nF/cm^2$ and the dielectric loss was 0.04. This nano-porous $Al_2O_3$ is a good material candidate for the embedded capacitor application for electronic products.

Keywords

References

  1. S. K. Bhattacharta and R. R. Tummala, J. Mater. Sci., 11, 253 (2000)
  2. M. A. Mccormick and E. B. Slamovich. J. Em. Ceram. Soc., 23, 2142 (2003)
  3. D. Balaraman, P. M. Raj, L. Wan, I. R. Abothu, S. Bhattacharya, S. Dalmia, M. J. Lance, M. Swaminathan and R. R. Tummala, J. Elect.Ceram., 13, 95 (2004)
  4. R. Croswell and J. Savic, www.circuitree.com., Aug, (2002)
  5. R. Ulrich, Intergated Passive Component Technology, IEEE Press., p.55 (2003)
  6. D. Ghost, B. Laughlin, J. Nath, A. I. Kingon, M. B. Steer and J-P. Maria, Thin Solid Film., 496, 669 (2006) https://doi.org/10.1016/j.tsf.2005.09.025
  7. V. P. Parkhutik and V. I. Shershulsky, J. Phys. D, Appl. Phys., 25, 1258 (1992) https://doi.org/10.1088/0022-3727/25/8/017
  8. M. M. Lohrengel, Mater. Sci. Eng., 11, 243 (1993) https://doi.org/10.1016/0927-796X(93)90005-N
  9. S. S. Park and B. T. Lee, J. Elect. Ceram., 13, 111(2004) https://doi.org/10.1007/s10832-004-5085-z
  10. T. W. Hickmott, J. Appl. Phys., 93, 3461 (2003) https://doi.org/10.1063/1.1544073
  11. X. Yu, Y. Li, W. Ge, Q. Yang, N. Zhu and K. K. Zadeh, Nano. Tech., 17, 808 (2006) https://doi.org/10.1088/0957-4484/17/3/033
  12. K. H. Lee, H. Y. Lee and W. Y. Jeong, J. of. Kor. Electrochem. Soc., 4, 47 (2001)
  13. T. W. Hickmott, J. Appl. Phys., 87, 7903 (2000) https://doi.org/10.1063/1.373474
  14. T. W. Hickmott, J. Appl. Phys., 88, 2805 (2000) https://doi.org/10.1063/1.1287116
  15. S. K. Hong, J. Kor. Elect., 42, 1 (2005)