DOI QR코드

DOI QR Code

Effect of Joule Heating on Electromigration Characteristics of Sn-3.5Ag Flip Chip Solder Bump

Joule열이 Sn-3.5Ag 플립칩 솔더범프의 Electromigration 거동에 미치는 영향

  • Lee, Jang-Hee (School of Materials Science and Engineering, Andong National University) ;
  • Yang, Seung-Taek (Package R&D Division, Hynix Semiconductor Inc.) ;
  • Suh, Min-Suk (Package R&D Division, Hynix Semiconductor Inc.) ;
  • Chung, Qwan-Ho (Package R&D Division, Hynix Semiconductor Inc.) ;
  • Byun, Kwang-Yoo (Package R&D Division, Hynix Semiconductor Inc.) ;
  • Park, Young-Bae (School of Materials Science and Engineering, Andong National University)
  • 이장희 (안동대학교 신소재공학부) ;
  • 양승택 (하이닉스 반도체 PKG 연구소) ;
  • 서민석 (하이닉스 반도체 PKG 연구소) ;
  • 정관호 (하이닉스 반도체 PKG 연구소) ;
  • 변광유 (하이닉스 반도체 PKG 연구소) ;
  • 박영배 (안동대학교 신소재공학부)
  • Published : 2007.02.27

Abstract

Electromigration characteristics of Sn-3.5Ag flip chip solder bump were analyzed using flip chip packages which consisted of Si chip substrate and electroplated Cu under bump metallurgy. Electromigration test temperatures and current densities peformed were $140{\sim}175^{\circ}C\;and\;6{\sim}9{\times}10^4A/cm^2$ respectively. Mean time to failure of solder bump decreased as the temperature and current density increased. The activation energy and current density exponent were found to be 1.63 eV and 4.6, respectively. The activation energy and current density exponent have very high value because of high Joule heating. Evolution of Cu-Sn intermetallic compound was also investigated with respect to current density conditions.

Keywords

References

  1. A. T. Huang and K. N. Tu, J. Appl. Phys, 100, 033512 (2006) https://doi.org/10.1063/1.2227621
  2. S.-H. Chae, X. Zhang, H.-L. Chao, K.-H. Lu and P. S. Ho, in Proceedings of 56rd ECTC, 650 (2006) https://doi.org/10.1109/ECTC.2006.1645719
  3. M. Ding, G. Wang, B. Chao and P. S. Ho, J. Appl. Phys, 99, 094906 (2006) https://doi.org/10.1063/1.2193037
  4. J. R. Lloyd, J. Phys. D. Appl, Phys, 32, R109-R118 (1999) https://doi.org/10.1088/0022-3727/32/17/201
  5. T. L. Shao, Y H. Chen, S. H. Chiu and Chih Chen, J. Appl. Phys, 96(8), 4518-4524 (2004) https://doi.org/10.1063/1.1788837
  6. Black, J.R. IEEE trans. Electron Devices, ED-16(4), 338 (1969) https://doi.org/10.1109/T-ED.1969.16754
  7. S. H. Chiu, T. L. Shao and Chih Chen, Appl. Phys. Lett., 88, 022110 (2006) https://doi.org/10.1063/1.2151255
  8. Y-C. Hsu, C.-K. Chou, P. C. Liu and C. Chen, J. Appl. Phys, 98, 033523 (2005) https://doi.org/10.1063/1.1999836
  9. T. Y. Lee and K. N. Tu, J. Appl. Phys, 90(9), 4502-4508 (2001) https://doi.org/10.1063/1.1400096
  10. W. J. Choi, E. C. C. Yeh and K. N. Tu, J. Appl. Phys, 94(9), 5665-5671 (2003) https://doi.org/10.1063/1.1616993
  11. A. K. Bandyopadhyay and S. K. Sen, J. Appl. Phys, 67(8), 3681-3688 (1990) https://doi.org/10.1063/1.345324
  12. J. W. Nah, Fei Ren and K. N. Tu, J. Appl. Phys, 99, 023520 (2006) https://doi.org/10.1063/1.2163982
  13. H. Gan and K. N. Tu, J. Appl. Phys, 97, 063514 (2005) https://doi.org/10.1063/1.1861151

Cited by

  1. Effects of Surface Finishes and Current Stressing on Interfacial Reaction Characteristics of Sn-3.0Ag-0.5Cu Solder Bumps vol.41, pp.4, 2012, https://doi.org/10.1007/s11664-011-1888-2