DOI QR코드

DOI QR Code

Effect of MgO-P2O5 Sintering Additive on Microstructure of Sintered Hydroxyapatite (HAp) Bodies and Their In-Vitro Study

  • Lee, Byong-Taek (School of Advanced Materials Engineering, Kongju National University) ;
  • Youn, Hyeong-Chul (School of Advanced Materials Engineering, Kongju National University) ;
  • Lee, Chi-Woo (School of Advanced Materials Engineering, Kongju National University) ;
  • Song, Ho-Yeon (Department of Microbiology, School of Medicine, Soonchunhyang University)
  • Published : 2007.02.27

Abstract

The effects of $MgO-P_2O_5$ based sintering additive on the microstructure and material and biological properties of hydroxyapatite $(HAp,\;Ca_{10}(PO_4)_6(OH)_2)$ ceramic were investigated using XRD, SEM and TEM techniques. The $MgO-P_2O_5$ sintering additive improved the material properties and increased the grain size in the sintered HAp bodies. As the content of sintering additive increased over 4 wt%, a small amount of the HAp phase was decomposed and transformed to ${\beta}-TCP$. In the 2 wt% $MgO-P_2O_5$ content HAp sintered body, the maximum values of density and hardness were respectively about 3.10 gm/cc and 657 HV. However, the maximum fracture toughness in the HAp body containing 8 wt% $MgO-P_{2}O_{5}$ was about $1.02MPa{\cdot}m^{1/2}$ due to the crack deflection effect. Human osteoblast like MG-63 cells and osteoclast like raw 264.7 cells were well grown and fully covered all of the HAp sintered bodies. The osteoblast cells were grown with spindle-shaped and the osteoclast cells had a grape-like round shape.

Keywords

References

  1. F. Watari, A. Yokoyama, F. Saso, M. Uo and T. Kawasaki, Comp. Part B, 28B, 5 (1997) https://doi.org/10.1016/S1359-8368(96)00021-2
  2. P. Ducheyne and Q. Qiu, Biomaterials, 20, 2287 (1999) https://doi.org/10.1016/S0142-9612(99)00181-7
  3. L. L. Hench, J. Am. Ceram. Soc., 74, 1487 (1991) https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
  4. L. L. Hench, J. Am. Ceram. Soc., 81, 1705 (1998)
  5. R. Z. Legeros, S. Lin, R. Rohanizadeh, D. Mijares and J. P. Legeros, J. Mater. Sci. Mater. Med., 14, 201 (2003) https://doi.org/10.1023/A:1022872421333
  6. S. J. Kalita, S. Bose, H. L. Hosick and A. Bandopadhya, Biomaterials, 25, 2331 (2004) https://doi.org/10.1016/j.biomaterials.2003.09.012
  7. C. Ribeiro, E. C. S. Rigo, P. Sepulveda, J. C. Bresslani and A. H. A. Bresslani, Mater. Sci. Eng., C 24, 631 (2004) https://doi.org/10.1016/j.msec.2004.08.006
  8. K. J. L. Burg, S. Porter and J. F. Kellam, Biomaterials, 21, 2347 (2000) https://doi.org/10.1016/S0142-9612(00)00102-2
  9. A. K. Dash and G. C. Cudworth, J. Pharmacol. Toxicol. Method, 40, 1 (1998) https://doi.org/10.1016/S1056-8719(98)00027-6
  10. W. Suchanek and M. Yoshimura, J. Mater. Res., 13, 94 (1998) https://doi.org/10.1557/JMR.1998.0015
  11. E. Adolfsson, P. Alberiushenning and L. Hermansson, J. Am. Ceram. Soc., 83, 2798 (2000)
  12. M. A. Lopes, F. J. Monteiro and J. D. Santos, Biomaterials, 20, 2085 (1999) https://doi.org/10.1016/S0142-9612(99)00112-X
  13. J. D. Santos, J. C. Knowles, R. L. Reis, F. J. Monteiro and G W. Hastindgs, Biomaterials, 15, 5 (1994) https://doi.org/10.1016/0142-9612(94)90188-0
  14. J. C. Knowless, S. Talal and J. D. Santos, Biomaterials, 17, 1437 (1996) https://doi.org/10.1016/0142-9612(96)87287-5