References
- Abeles, F.B., P.W. Morgan, and M.E. Saltveit, Jr. 1992. Ethylene in plant biology. 2nd ed. Academic Press, San Diego, CA, USA
- Akhtar, M.J., M. Arshad, A. Khalid, and M.H. Mahmood. 2005. Substrate-dependent biosynthesis of ethylene by rhizosphere soil fungi and its influence on etiolated pea seedlings. Pedobiologia 49, 211-219 https://doi.org/10.1016/j.pedobi.2004.10.006
- Arshad, M. and W.T. Frankenberger, Jr. 1988. Influence of ethylene produced by soil microorganisms on etiolated pea seedlings. Appl. Environ. Microbiol. 54, 2728-2732
- Arshad, M. and W.T. Frankenberger, Jr. 1998. Plant-growth regulating substances in the rhizosphere: microbial production and functions. Adv. Agron. 62, 145-151
- Arshad, M. and W.T. Frankenberger, Jr. 2002. Ethylene: agricultural sources and applications. Kluwer Academic Publishers, New York, USA
- Barry, C.S., E.A. Fox, H. Yen, S. Lee, T. Ying, D. Grierson, and J.J. Giovannoni. 2001. Analysis of ethylene response in the epinastic mutant of tomato. Plant Physiol. 127, 58-66 https://doi.org/10.1104/pp.127.1.58
- Belimov, A.A., V.I. Safronova, and T. Mimura. 2002. Response of spring rape (Brassica napus var. oleifera L.) to inoculation with plant growth promoting rhizobacteria containing-1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant. Can. J. Microbiol. 48, 189-199 https://doi.org/10.1139/w02-007
- Bleecker, A.B., M.A. Estelle, C. Sommeruille, and H. Kende. 1988. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241, 1086-1089 https://doi.org/10.1126/science.241.4869.1086
- Chen, Q.C. and A.B. Bleecker. 1995. Analysis of ethylene signaltransduction kinetic associated with seedling-growth response and chitinase induction in wild type and mutant Arabidopsis. Plant Physiol. 108, 597-607 https://doi.org/10.1104/pp.108.2.597
- Dworkin, M. and J. Foster. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 75, 592-601
- Flores-Vargas, R.D. and G.W. O'Hara. 2006. Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vineyards. J. Appl. Microbiol. 100, 946-954 https://doi.org/10.1111/j.1365-2672.2006.02851.x
- Ghosh, S., J.N. Penterman, R.D. Little, R. Chavez, and B.R. Glick. 2003. Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol. Biochem. 41, 277-281 https://doi.org/10.1016/S0981-9428(03)00019-6
- Glick, B.R., D.M. Penrose, and J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growthpromoting bacteria. J. Theor. Biol. 190, 63-68 https://doi.org/10.1006/jtbi.1997.0532
- Guzman, P. and J.R. Ecker. 1990. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Am. Soc. Plant Physiol. 2, 513-523
- Ince, J.E. and C.J. Knowles. 1986. Ethylene formation by cell free extract of Escherichia coli. Arch. Microbiol. 146, 151-158 https://doi.org/10.1007/BF00402343
- Jia, Y.J, Y. Kakuta, M. Sugawara, T. Igarashi, N. Oki, M. Kisaki, T. Shoji, Y. Kanetuna, T. Horita, H. Matsui, and M. Honma. 1999. Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium ctrinum. Biosci. Biotechnol. Biochem. 63, 542-549 https://doi.org/10.1271/bbb.63.542
- Khalid, A., M.J. Akhtar, M.H. Mahmood, and M. Arshad. 2006. Effect of substrate-dependent microbial produced ethylene on plant growth. Microbiology 75, 231-236 https://doi.org/10.1134/S0026261706020196
- Khalid, A., M. Arshad, and Z.A. Zahir. 2004. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 96, 473-480 https://doi.org/10.1046/j.1365-2672.2003.02161.x
- Li, J., D.H. Ovakim, T.C. Charles, and B.R. Glick. 2000. An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr. Microbiol. 41, 101-105 https://doi.org/10.1007/s002840010101
- Lurssen, K., K. Naumann, and R. Schroder. 1979. 1-Aminocyclopropane-1-carboxylic acid an intermediate of the ethylene biosynthesis in higher plants. Z. Pflanzenphysiol. 92, 285-294 https://doi.org/10.1016/S0044-328X(79)80011-2
- McKeon, T.A., N.E. Hoffmann, and S.F. Yang. 1982. The effect of plant-hormone pretreatments on ethylene production and synthesis of 1-aminocyclopropane-1-carboxylic acid in waterstressed wheat leaves. Planta 155, 437-443 https://doi.org/10.1007/BF00394473
- McKeon, T.A., J.C. Fernandez-Maculet, and S.F. Yang. 1995. Biosynthesis and metabolism of ethylene, p. 118-139. In P.J. Davies (ed.), Plant Hormones, Physiology, Biochemistry and Molecular Biology-1995. Kluwer Academic Publishers, Dordrecht, Netherlands
- Nagatsu, T. and K. Yagi. 1966. A simple assay of monoamine oxidase and D-amino acid oxidase by measuring ammonia. J. Biochem. 60, 219-221 https://doi.org/10.1093/oxfordjournals.jbchem.a128422
- Nazli, Z.H., M. Arshad, and A. Khalid. 2003. 2-Keto-4-methylthiobutyric acid-dependent biosynthesis of ethylene in soil. Biol. Fertil. Soils 37, 130-135
- Neljubow, D. 1901. Uber die horizontale nutation der stengel von Pisum sativum und einiger anderer pflanzen. Beih. Bot. Zentralbl. 10, 128-138
- Penrose, D.M. and B.R. Glick. 2001. Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can. J. Microbiol. 41, 368-372
- Primrose, S.B. 1977. Evaluation of the role of methional, 2-keto-4-methylthiobutyric acid and peroxidase in ethylene formation by Escherichia coli. J. Gen. Mircrobiol. 98, 519-528 https://doi.org/10.1099/00221287-98-2-519
- Reid, M.S. 1995. Ethylene in plant growth, development and senescence, p. 486-508. In P.J. Davies (ed.), Plant Hormone, Physiology, Biochemistry and Molecular Biology. Kluwer Academic Publishers, Dordrecht, Netherlands
- Shaharoona, B., M. Arshad, and Z.A. Zahir. 2006a. Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett. Appl. Microbiol. 42, 155-159 https://doi.org/10.1111/j.1472-765X.2005.01827.x
- Shaharoona, B., M. Arshad, Z.A. Zahir, and A. Khalid. 2006b. Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol. Biochem. 38, 2971-2975 https://doi.org/10.1016/j.soilbio.2006.03.024
- Simons, M., A.J. van der Bij, I. Brand, L.A. de Weger, C.A. Wijffelman, and B.J.J. Lugtenberg. 1996. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol. Plant-Microbe Interact. 9, 600-607 https://doi.org/10.1094/MPMI-9-0600
- Ton, J., S. Davison, S.C.M. van Wees, L.C. van Loon, and C.M.J. Pieterse. 2001. The Arabidopsis ISRI locus controlling rhizobacteria- mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol. 125, 652--661 https://doi.org/10.1104/pp.125.2.652
- Wang, C., E. Knill, B.R. Glick, and G. Defagox. 2000. Effect of transferring 1-aminocycloproane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth promoting and disease suppressive capacities. Can. J. Microbiol. 46, 898-907 https://doi.org/10.1139/cjm-46-10-898