Nucleotide Sequence and Secondary Structure of 5S rRNA from Sphingobium chungbukense DJ77

  • Published : 2007.02.22

Abstract

The 58 rRNA gene from Sphingobium chungbukense DJ77 was identified. The secondary structure of the 199-base-long RNA was proposed. The two-base-long D loop was the shortest among all of the known 5S rRNAs. The U19-U64 non-canonical pair in the helix II region was uniquely found in strain DJ77 among all of the sphingomonads.

Keywords

References

  1. Ewing, B. and P. Green. 1998. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186-194 https://doi.org/10.1101/gr.8.3.186
  2. Ewing, B., L. Hillier, M.C. Wendl, and P. Green. 1998. Base-calling of automated sequencer traces using phred. I. accuracy assessment. Genome Res. 8, 175-185 https://doi.org/10.1101/gr.8.3.175
  3. Felsenstein, J. 1993. PHYLIP (phylogeny inference package), version 3.5c. University of Washington
  4. Gordon, D., C. Abajian, and P. Green. 1998. Consed: a graphical tool for sequence finishing. Genome Res. 8, 195-202 https://doi.org/10.1101/gr.8.3.195
  5. Gutell, R.R., N. Larsen, and C.R. Woese. 1994. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative prospective. Microbiol. Rev. 58, 10-26
  6. Kim, C.K., J.W. Kim, Y.C. Kim, and T.I. Mheen. 1986. Isolation of aromatic hydrocarbon-degrading bacteria and genetic characterization of their plasmid genes. Kor. J. Microbiol. 24, 67-72
  7. Kim, S.J., J. Chun, K.S. Bae, and Y.C. Kim. 2000. Polyphasic assignment of an aromatic-degrading Pseudomonas sp., strain DJ77, in the genus Sphingomonas as Sphingomonas chungbukensis sp. nov. Int. J. Syst. Evol. Microbiol. 50, 1641-1647 https://doi.org/10.1099/00207713-50-4-1641
  8. Lee, J.S., S.J. Jin, and H.S. Kang. 2001. Molecular organization of the ribosomal RNA transcription unit and the phylogenetic study of Zymomonas mobilis ZM4. Mol. Cells 11, 68-74
  9. Lee, K.Y., H.R. Kwon, W.H. Lee, and Y.C. Kim. 2005. Nucleotide sequence and secondary structure of 16S rRNA from Sphingomonas chungbukensis DJ77. Kor. J. Microbiol. 41, 125-129
  10. Nagaswamy, U, N. Voss, Z. Zhang, and G.E. Fox. 2000. Database of non-canonical base pairs found in known RNA structures. Nucleic Acids Res. 28, 375-376 https://doi.org/10.1093/nar/28.1.375
  11. Pal, R., S. Bala, M. Dadhwal, M. Kumar, G. Dhingra, O. Prakash, S.R. Prabagaran, S. Shivaji, J. Cullum, C. Holliger, and R. Lal. 2005. Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int. J. Syst. Evol. Microbiol. 55, 1965-1972 https://doi.org/10.1099/ijs.0.63201-0
  12. Szymanski, M., M.Z. Barciszewska, J. Barciszewski, and V.A. Erdmann. 2000. 5S ribosomal RNA database Y2K. Nucleic Acids Res. 28, 166-167 https://doi.org/10.1093/nar/28.1.166
  13. Takeuchi, M., K. Hamana, and A. Hiraishi. 2001. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int. J. Syst. Evol. Microbiol. 51, 1405-1417 https://doi.org/10.1099/00207713-51-4-1405
  14. Thompson, H., M.J. Saunders, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673