DOI QR코드

DOI QR Code

근거리장에서 HWAW 기법의 수치해석적 검증

Numerical Verification of HWAW Method in the Near Field

  • 방은석 (한국지질자원연구원 지반안전연구부) ;
  • 박형춘 (충남대학교 토목공학과) ;
  • 김동수 (한국과학기술원 건설 및 환경공학과)
  • 발행 : 2007.02.28

초록

기존의 표면파 기법들은 근거리장 효과를 피하기 위하여 적절한 실험 방법 및 필터 기준을 제시하고 있다. HWAW 기법은 다른 표면파와는 다르게 이러한 근거리장 영역에서의 파의 거동을 적극적으로 활용하여 지반의 전단파 속도 주상도를 도출한다. 에너지가 작은 저주파 신호를 시간-주파수 해석을 통해 획득하며 체적파의 영향을 고려한 단일 배열 역산을 통해 가능하다. 이러한 사항을 검증하기 위해서 근거리장에서의 탄성파의 전파 형상을 수치해석을 통하여 모사하였으며 다양한 지반 형태를 대표하기 위해 5개의 지반모델을 구성하였다. 수치모델링을 통해 획득한 시간영역 신호를 이용하여 HWAW 기법으로 실험분산곡선을 도출하였다. 도출된 실험 분산곡선과 3차원 정모델링(Kausel의 방법)을 통해 계산된 이론 분산곡선의 형상이 각 위치에서 저의 일치하였다. 그러므로 HWAW 기법을 수행하는데 있어 근거리장 영역이 포함된 실험 분산곡선을 획득하여도 Kausel의 방법을 이용하여 역산을 수행할 경우 신뢰성 있는 지반의 전단파 속도를 도출하는 것이 가능하다는 것을 확인할 수 있었다.

Various field setup and filtering criteria have been suggested to avoid the near field effects in surface wave methods. Unlike other surface wave methods HWAW method uses the near field component positively. It is possible by using maximum energy point based on time-frequency map and inversion method to consider receiver locations from the source point and body wave component. To verify the HWAW method in the near field numerical study was performed and the wave propagation in the stratified soil media was simulated due to a surface point load. All of five representative soil models were used. The experimental dispersion curves, determined by HWAW method at the various receiver distances in the region of near field, all coincided well with the theoretical dispersion curves determined by 3D forward modeling (Kausel's method). Consequently, it was considered that the HWAW method can provide reliable $V_s$ profiles effectively in the near field.

키워드

참고문헌

  1. 박형춘, 김동수 (2004a), 'HWAW방법을 이용한 새로운 탄성파 지반조사기법의 개발(I) : 분산곡선의 결정', 대한토목학회논문집, Vol.24, No.2C, pp.105-115
  2. 박형춘, 김동수 (2004b), 'HWAW방법을 이용한 새로운 탄성파 지반조사기법의 개발(II) : 실험 구성 및 역산과정', 대한토목학회논문집, Vol.24, No.2C, pp.117-124
  3. Al-Hunaidi, M.O. (1994), 'Analysis of disperded multi-mode signals of the SASW method using multiple filter/crosscorrelation technique', Soil Dynamics and Earthquake Engineering, Vol.13, pp.13-24 https://doi.org/10.1016/0267-7261(94)90037-X
  4. Foti, S. (2000), Multistation methods for geotechnical characterization using surface waves, Ph. D. dissertation, Politecnico di Tirino, pp.229
  5. Haskell, N.A. (1953), 'The dispersion of surface waves in multilayered media', Bulletin of the Seismological Society of America, Vol.43 , pp.17-34
  6. Heisey, J.S., Stokoe, H, K. H., Hudson, W. R. and Meyer, A.H. (1982), Determination of in-situ shear wave velocities from spectral analysis of surface waves, Research Report N. 256-2, Center for Transportation Research, University of Texas of Austin, pp.277
  7. Joh, S.H. (1996a), Advanced in Interpretation and Analysis Techniques for Spectral-Analysis-of-Surface-Waves (SASW) Measurement, Ph. D. Dissertation, The Unversity of Texas at Austin
  8. Job, S.H. (1996b), FIT7, a Computer Program for Forward Modeling, Inversion, and Time History Generation for SASW Method, The Unversity of Texas at Austin
  9. Kausel, E. (1981), An explicit solution for the Green functions for dynamic loads in layered media, Research Report R81-13, MIT, Cambridge, pp.79
  10. Kausel, E. and Roesset, lM. (1981), 'Stiffness matrices for layered soils', Bulletin of the Seismological Society of America, Vol.71, No.6, pp.1743-1761
  11. Kennet, B.L.N. (1974), 'Reflections, rays, and reverberations', Bulletin of the Seismological Society and America, Vol.64, pp. 1685-1696
  12. Lai, C.G. (1998), Simultaneous inversion of Rayleigh phase velocity and attenuation for near-surface site characterization, Ph. D. dissertation, Georgia Institute of Technology, pp.370
  13. Lamb, H. (1904), 'On the propagation of tremors over the surface of an elastic solid', Philosophical Transactions of the Royal Society of London, A103, pp.l-42
  14. O'neill, Adam (2003), Full-waveform Reflectivity for modelling, inversion and Appraisal of seismic surface wave dispersion in shallow site investigations, Ph. D. Dissertation, The University of Western Australia
  15. Park, CB., Miller, R.D. and Xia, J. (1999), 'Multichannel analysis of surface waves (MASW)', Geophysics, Vol.64, pp.800-808 https://doi.org/10.1190/1.1444590
  16. Rix, GJ., Lai, Co. and Fori, S. (2001). 'Simultaneous measurement of surface wave dispersion and attenuation curve', Geotechnical Testing Journal, Vol.24, No.4, pp.350-358 https://doi.org/10.1520/GTJ11132J
  17. Sanchez-Salinero, I. (1987), Analytical investigation of seismic methods used for engineering applications, Ph. D. dissertation, Univ. of Texas of Austin. pp.401
  18. Thomson, W.T. (1950), 'Transmission of elastic waves through a stratified solid', J of Applied Physics, Vol.21, pp.89-93 https://doi.org/10.1063/1.1699629
  19. Xia., I. Miller, R.D. (2005), 'Imaging dispersive energy by slant stacking', SEG/Huston annual Meeting, pp.1061-1064
  20. Yoon, S.S. (2005), Array-Based Measurement of Surface Wave Dispersion and Attenuation Using Frequency-Wavenumber Analysis, Ph. D. dissertation, Georgia Institute of Technology, pp.235
  21. Zerwer, A., Cascante, G. and Hutchinson, J. (2002), 'Parameter Estimation in Finite Element Simulations of Rayleigh Waves', Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, No.3, pp.250-261 https://doi.org/10.1061/(ASCE)1090-0241(2002)128:3(250)