DOI QR코드

DOI QR Code

열처리에 따른 점토의 애터버그 한계 영향

The Effects on the Atterberg Limits of Clays with Heat Treatment

  • 민덕기 (울산대학교 공과대학 건설환경공학부) ;
  • 황광모 (경북전문대학 토목과) ;
  • 이성호 (울산대학교 공과대학 건설환경공학부)
  • Min, Tuk-Ki (Dept. of Civil and Environmental Engrg., Univ. of Ulsan) ;
  • Hwang, Kwang-Mo (Dept. of Civil Engrg., Kyoungbuk College) ;
  • Lee, Sung-Ho (Dept. of Civil and Environmental Engrg., Univ. of Ulsan)
  • 발행 : 2007.02.28

초록

본 연구에서는 카올린광물과 벤토나이트로 혼합물에 대한 열처리의 영향을 조사하였다. $100^{\circ}C$에서 $500^{\circ}C$까지 $100^{\circ}C$씩 온도를 증가시켜 인공적으로 생성한 혼합점토시료에 대하여, 열처리에 따른 건설재료의 강도특성을 분석코자 액성한계와 소성한계의 변화를 조사하였다. 실험 결과, 액성한계는 $100^{\circ}C$에서 $300^{\circ}C$ 사이에서는 약간 감소하는 경향을 나타내었으며, $300^{\circ}C$ 이후에는 액성한계가 급격히 감소하였다. 반면, 소성한계는 열처리의 영향이 크지 않았으며, $500^{\circ}C$로 처리한 혼합점토시료 모두에서 비소성(N.P.)을 나타내었다. 열처리에 따른 NaCl 함유량은 열처리 온도가 증가함에 따라 감소하는 것으로 나타났으며, 수소이온농도(pH) 역시 열처리의 크게 영향을 받는 것으로 나타났다. 양이온교환능력(C.E.C.) 또한, 열처리 온도에 따라 감소하는 경향을 보여 열처리에 따라 혼합점토의 액 소성한계가 영향을 크게 받는 것으로 나타났다.

This study examines the effects of heat treatment under laboratory conditions for mixtures of two types of clay (kaolinite and montmorillonite). Clay samples were burned with different temperatures ranging from $100^{\circ}C\;to\;500^{\circ}C$. The Atterberg limits such as liquid and plastic limits were influenced with heat treatment. According to the experimental results, the liquid limits slightly decreased between $100^{\circ}C\;to\;300^{\circ}C$, whereas rapid decreases were observed after $300^{\circ}C$. The plastic limits did not show noticeable differences in the interval $100^{\circ}C\;to\;400^{\circ}C$. But the clay samples showed non plastic behavior at $500^{\circ}C$. The amount of NaCl was getting decreased with temperature. It also revealed that the pH values were also influenced with heat treatment, and the cation exchange capacity (C.E.C) values decreased with temperature.

키워드

참고문헌

  1. 이강일 (2005), '고온이력을 받는 점토의 압밀 및 전단특성', 한국지반공학회 논문집, 제21권 제4호 pp.41-49
  2. Abu-Zreig, M. M., Al-Akhras, N. M. and Attorn, M. F. (2001), 'Influence of heat treatment on the behaviour of clayey soils', Applied Clay Science, Vol.20, pp.129-135 https://doi.org/10.1016/S0169-1317(01)00066-7
  3. Akinrnusuru, J. (1994), 'Thermal conductivity of earth blocks', Journal of Materials in Civil Engineering, Vo1.6(3), pp.341-351 https://doi.org/10.1061/(ASCE)0899-1561(1994)6:3(341)
  4. Alcocer, C. and Chowdhury, H. (1993), 'Experimental study of an environmental remedation of Gulf Coast crude-oil contaminated soil using low-temperature thermal treatment', Proceedings of the 1993 Western Regional Meeting, Louisiana. Society of Petroleum Engineers, Richardson, TX, pp.723-724
  5. Ctori, P. (1989), 'The effects of temperature on the physical properties of cohesive soils', Ground Engineering, Vol.22, pp.26-27
  6. Farag, I. (1993), 'Simulating hazardous waste incineration', Chemical Engineer, Vol.538, pp.11-16
  7. Jefferson, I. and Rogers, C. D. F. (1998), 'Liquid limit and the temperature sensitivity of clays', Elsevier Sci. Engineering Geology, Vol.49, pp.95-109 https://doi.org/10.1016/S0013-7952(97)00077-X
  8. Joshi, R., Gopal Achari, C., Horsfield, D. and Nagaraj, T. (1994), 'Effect of heat treatment on strength of clays', Journal of Geotechnical Engineering, Vol.120, No.6, pp.1080-1088 https://doi.org/10.1061/(ASCE)0733-9410(1994)120:6(1080)
  9. Ma, C. and Hueckel, T. (1992), 'Effects of inter-phase mass transfer in heated clays, a mixture theory', International Journal of Engineering Science, Vo1.30(11), pp.1567-1582 https://doi.org/10.1016/0020-7225(92)90126-2
  10. Mitchell, J. K. (1969), 'Temperature effects on the engineering properties and behavior of soils', Highway Research Board, Special Report, Vol.103, Washington, DC, pp.9-28
  11. Moriwaki, T., Yashima, K. and Nageo, M. (1994), 'Shear deformation characteristics of Hiroshima clay cured at high temperature', Proc. of the international symposium on pre-failure deformation characteristics of geomaterials, Vol.1, No.4, pp.133-147
  12. Sridharan, A., Rao, S. M. and Murthy, N. S. (1986), 'Liquid limit of montmorillonite soils', ASTM Geotechnical Testing Journal, Vol.9, pp.156-159 https://doi.org/10.1520/GTJ10623J
  13. Sridharan, A., Rao, S. M. and Murthy, N. S. (1988), 'Liquid limit of Kaolinite soils', Geotechnique, Vol.38, No.2, pp.191-198 https://doi.org/10.1680/geot.1988.38.2.191
  14. Varlakov, A., Sobolev, I., Barinov, A., Dmitriev, S., Karlin, S. and Flit, V. (1997), 'Method of treatment of radioactive silts and soils', Proceedings of the 1996 MRS Fall Meeting, Moscow, Russia. Materials Research Society, Pittsburgh, PA, pp.591-594
  15. Yang, L. and Farouk, B. (1995), 'Modeling of solid particles flow and heat transfer in rotary kiln calcines', Proceedings of the 1995 30th National Heat transfer Conference, Portland, Oregon. American Society of Mechanical Engineers, New York, NY, pp.11-19
  16. Grabowska-Olszewska, B. (2003), 'Modelling physical properties of mixtures of clay: example of a two-component mixture of kaolinite and montmorillonite', Applied Clay Science, Elsevier, Vol.22, pp.251-259 https://doi.org/10.1016/S0169-1317(03)00078-4
  17. Tan, O. Yilmaz, L. and Zairnoglu, A. S. (2004), 'Variation of some engineering properties of clays with heat treatment', Materials Letters, Elsevier, Vol.58, pp.1176-1179 https://doi.org/10.1016/j.matlet.2003.08.030