압전복합재료를 이용한 초음파 트랜스듀서의 음향 특성

Acoustic Properties of Ultrasonic Transducer Using Piezocomposites

  • 이상욱 (영남대학교 전자공학과) ;
  • 류정탁 (대구대학교 전자공학부) ;
  • 남효덕 (영남대학교 전자정보공학부) ;
  • 김연보 (대구대학교 전자공학부)
  • 발행 : 2007.02.28

초록

본 연구에서는 압전세라믹과 고분자재료를 사용하여 다이스와 필 방법으로 2-2형 압전복합재료를 제작하고 이것을 이용하며 초음파 센서를 설계하고 제작하여 전기적 및 음향 특성을 조사하였다. 제작된 시편의 공진특성은 유한요소 해석 결과와 임피던스 분석기(HP4194A)를 이용하여 실제로 측정한 결과와 유사하게 나타났다. 2-2형 압전복합재료의 고유음향 임피던스는 PZT의 부피분율이 감소함에 따라 선형적으로 감소하였다. 이것을 이용하여 제작된 초음파 센서의 공진특성 및 전기기계결합계수는 PZT의 부피분율이 0.6일 때 가장 우수하였다. 또한, 이것의 음향특성을 측정한 결과 PZT 부피분율이 0.6일때 진폭, 주파수 대역폭, 울림감쇠 특성 등이 가장 우수하게 나타났으며, 단일 압전세라믹으로 제작된 센서에 비하여 상당히 우수한 감도 특성을 나타내었다.

We have investigated on the development of 2-2 type piezocomposites that have better piezoelectric activity and lower acoustic impedance than those of conventional piezoceramics. In this study, we have investigated the piezoelectric and acoustic properties of 2-2 type piezocomposites sensor which was fabricated using dice-and-fill technique for the different volume fraction of PZT. The specific acoustic impedance of 2-2 type piezocomposites decreased linearly when PZT volume fraction was decreased. The resonance characteristics measured by an impedance analyzer(HP4194A) were similar to the analysis of finite element method (FEM). The resonance characteristics and the electromechanical coupling factor were the best when the volume fraction PZT was 0.6. It also showed the highest result from the standpoint of sensitivity, bandwidth and ring-down property and so on at the same condition. The specific characteristics show that the 2-2 type piezocomposites turned out to be superior to the ultrasonic sensor composed by single phase PZT.

키워드

참고문헌

  1. T. R. Gururaja, A. Safari, R. E. Nevvnham and L. E. Cross, 'Piezoelectric ceramic-polymer composites for transducer applications' in Electronic Ceramics, L. M. Levinson, Ed. New York: Marcel Dekker, 92-128, 1987
  2. Jeffrey H. Goll, 'The design of broad-band fluid-loaded ultrasonic transducers,' IEEE Trans. on Ultrason., Ferroelect. and Freq. Control, SU-26 , 6, 386--393. 1979
  3. 노용래, '초음파센서용 압전 재료', 전기전자재료학회지, 14 (4), 16--22, 2001
  4. R. E. Nevvnham, D. P. Skinner, and L. E. Cross, 'Connectivity and piezoelectric-pyroelectric composites,' Mat. Res. Bull., 13, (5) 525-536, 1978 https://doi.org/10.1016/0025-5408(78)90161-7
  5. Y. Shui and Q. Xue, 'Dynamic characteristics of 2-2 piezoelectric composite transducers,' IEEE Trans. Ultrason. Ferroelect., Freq, Contr., 44 (5) 1110-1119, 1997 https://doi.org/10.1109/58.655636
  6. N. Lamberti, 'Optimization of acoustic matching layer for piezocomposite transducers,' Proc. IEEE Ultrasonic Symp., 2, 1105-1108, 2000
  7. T. R. Gururaia, W. A. Schulze, L. E. Cross, R. E. Nevvnham, B. A. Auld and Y. J. Wang, 'Piezoelectric composite materials for ultrasonic transducer applications. Part I: Resonant Modes of Vibration of PZT Rod-polymer Composites,' IEEE Trans. on Ultras on., Ferroelect. and Freq, Control, SU-32, 4, 499-513, 1985
  8. G. Hayward and M. Jackson, 'Lattice model of the thickness-mode piezoelectric transducer', IEEE Trans. on Ultrason,. Ferroelect., Freq. Control, SU-33 , 1, 41-50, 1986
  9. W. Qi and W. Cao, 'Finite element analysis and experimental studies on the thickness resonance of piezocomposite transducers,' Ultrasonic Imaging 18, 1-9, 1996 https://doi.org/10.1006/uimg.1996.0001
  10. G. Lous, I. Cornejo, T. Mcnulty and A. Safari, 'Fabrication of piezoelectric ceramic/polymer composite transducers using fused deposition of ceramics,' J. Am. Ceram. Soc., 83 (1), 124-128, 2000 https://doi.org/10.1111/j.1151-2916.2000.tb01159.x
  11. X. Geng, 'Ceramic/polymer 2-2 composites for high frequency transducers by tape casting,' Proc. IEEE Ultrasonic Symp., 1, 366-369, 2003
  12. J. W. Sliwa, J. S. Ayter and J. P. Mohrlll, Method for making piezoelectri composites, (U.S. Pat. 1993) chap. 5, pp. 236-240
  13. H. J. C. Wiliams, In ceramic fabrication process, (E. by F. Y. Wang Academic Press, New York, 1976) pp. 173-198
  14. K. Uchino and S. Nomura, ''New electromechanical materials and their applications,' Jap. J. Aopl, Phys., 20 (2), 225-228, 1981
  15. M. J. Haun and R. E. Newnham, 'Experimental and theoretical study of 1-3 and 1-3-0 piezoelectric PZT-Polymer composites for hydrophone applications,' Ferroelectrics, 68, 123-139, 1986 https://doi.org/10.1080/00150198608238743
  16. R. Lerch, 'Simulation of piezoelectric devices by two and three dimensional finite elements,' IEEE Trans. on Ultrason., Ferroelect. Freq. Control, SU-37, 2, 233-247, 1990
  17. A. Fufumoto, 'The application of piezoelectric ceramics in diagnostic ultrasound transducers, Ferroelectrics, 40, 212-230, 1982
  18. H. Takeuchi and C. Nakava, 'PZT/Polymer composites for medical ultrasonic probe,' Ferroelectrics, 68 (1) 53-62, 1986 https://doi.org/10.1080/00150198608238737
  19. W. R. Scott, 'Durable lead attachment techniques for PVDF polymer transducers with application to high voltage pulsed ultrasonics,' Ferroelectrics, 32, 79-83, 1981 https://doi.org/10.1080/00150198108238677
  20. G. Sagong, A. Safari, S. J. Jang and R. E. Newnham, 'Poling flexible piezoelectric composites,' Ferroelectrics, 5 (5) 131-138, 1985