DOI QR코드

DOI QR Code

Fabrication of Photonic Crystal Fiber using a Capillary Layer Method

모세관 적층 방법에 의한 광자결정 광섬유의 제작

  • Cho, Hyung-Su (Department of Physics, KyungHee University) ;
  • Chung, Hae-Yang (Department of Physics, KyungHee University) ;
  • Kim, Gil-Hwan (Photonics Research Center, Korea Institute of Science and Technology) ;
  • Koh, Dong-Yean (Photonics Research Center, Korea Institute of Science and Technology) ;
  • Lee, Sang-Bae (Photonics Research Center, Korea Institute of Science and Technology)
  • 조형수 (경희대학교 물리학과) ;
  • 정해양 (경희대학교 물리학과) ;
  • 김길환 (한국과학기술연구원 광기술 연구센터) ;
  • 고동연 (한국과학기술연구원 광기술 연구센터) ;
  • 이상배 (한국과학기술연구원 광기술 연구센터)
  • Published : 2007.02.25

Abstract

Photonic crystal fibers(PCFs) with silica cores within an away of air holes have unique properties. Broad band single-mode and the octave-spanning supercontinuum generation, impossible to achieve in classical fibers, can be realized. The design of PCFs is very flexible. There are two parameters to manipulate: air hole diameter, and lattice pitch. We introduced a fabrication process for control of the parameters to obtain endlessly single mode PCF, which is single mode in a large wavelength range, and highly nonlinear PCF. The numerical analysis and experiments are included.

실리카 코어 주변에 주기적인 공기층을 가지는 광자결정 광섬유는 넓은 파장 영역을 통한 단일모드의 구현 또는 1옥타브 이상의 광대역 연속광 발생과 같은 기존의 광섬유로는 불가능한 독특한 특성을 갖도록 유연하게 설계할 수 있다. 광자결정 광섬유의 설계에 사용되는 변수로는 공기층의 직경과 간격이 있으며 이러한 변수의 조절을 위한 공정을 도입하여 넓은 파장영역을 통한 단일모드 구현과 높은 비선형 특성을 가지는 광자결정 광섬유를 각각 제작 하였고 수치적 계산과 실험을 통해 그 특성을 살펴보았다.

Keywords

References

  1. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, 'Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,' Opt. Lett., vol. 26, 608-610, 2001 https://doi.org/10.1364/OL.26.000608
  2. N. A. Mortensen, 'Effective area of photonic crystal fibers,' Opt. Express 10, 341-348, 2002 https://doi.org/10.1364/OE.10.000341
  3. R.E. Slusher, B.J. Eggleton, Nonlinear photonic crystals, (Berlin, New York, Springer, 2003)
  4. Frederic Zolla, Gilles Renversez, Andre Nicolet, Boris Kuhlmey, Sebastien Guenneau, Didier Felbacq, Fundamentals of photonic crystal fibers, (Imperial College, 2005)
  5. A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, 'Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,' Appl. Phys. B 73, 181-184, 2001 https://doi.org/10.1007/s003400100629
  6. Jinendra K. Ranka, Robert S. Windeler, and Andrew J. Stentz, 'Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800nm,' Opt. Lett., vol. 25, no. 1, 25-27, 2000 https://doi.org/10.1364/OL.25.000025
  7. T. A. Birks, J. C. Knight, and P. St. J. Russell, 'Endlessly single-mode photonic crystal fiber,' Opt. Lett., vol. 22, no. 13, 961-963, 1997 https://doi.org/10.1364/OL.22.000961
  8. Niels Asger Mortensen, 'Effective area of photonic crystal fibers,' Opt. Express, vol. 10, no. 7, 341-348, 2002 https://doi.org/10.1364/OE.10.000341
  9. P.Russell, 'Photonic crystal fibers,' Science 299, 358-362 (2003) https://doi.org/10.1126/science.1079280
  10. Jonathan C. Knight, 'Photonic crystal fibres,' Nature 424, 847-851 (2003) https://doi.org/10.1038/nature01940
  11. S. G. Johnson, et al., 'Photonic Crystals - The Road from Theory to Practice', Kluwer Academic Pub., 2002
  12. T. P. White, R. C. McPhedran, C. M. de Sterke, M. J. Steel, 'Confinement losses in microstructured optical fibers,' Opt. Lett., 26, 1660-1662, 2001 https://doi.org/10.1364/OL.26.001660
  13. S. Coen et al., 'Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,' J. Opt. Soc. Am. B Vol. 19, No 4, 753-764, 2002 https://doi.org/10.1364/JOSAB.19.000753