DOI QR코드

DOI QR Code

Output Characteristics of a Pulsed Ti:sapphire Laser Oscillator Pumped Longitudinally by Second Harmonic Wave of Nd:YAG Laser and a Ti:sapphire Laser Amplifier Operated along the Single Path of the Oscillator Beam

Nd:YAG 레이저의 제 2조화파로 종여기하는 펄스형 Ti:sapphire 레이저 발진기와 이를 이용한 단일경로 형태의 Ti:sapphire 증폭기의 출력특성

  • Kim, Kyung-Nam (Dept. of Applied Optics and Electromagnetics, Hannam University) ;
  • Jo, Jae-Heung (Dept. of Applied Optics and Electromagnetics, Hannam University) ;
  • Lim, Gwon (Quantum Optics Division, Korea Atomic Energy Research Institute) ;
  • Cha, Byung-Heon (Quantum Optics Division, Korea Atomic Energy Research Institute)
  • 김경남 (한남대학교 이과대학 광.전자물리학과) ;
  • 조재흥 (한남대학교 이과대학 광.전자물리학과) ;
  • 임권 (한국원자력연구소 양자광학기술개발부) ;
  • 차병헌 (한국원자력연구소 양자광학기술개발부)
  • Published : 2007.02.25

Abstract

The various output characteristics of a pulsed Ti:sapphire laser oscillator with a plane-parallel resonator, pumped longitudinally by the second harmonic wave of a Nd:YAG laser, and the output of a Ti:sapphire laser amplifier operated along the single path of the oscillator beam were investigated and analyzed. In the case of the oscillator, we measured the spectrum, the pulse buildup time, the temporal duration time of the pulse, and the output energy according to the variation of the pumping energy, resonator length, and the reflectance of the output coupler. And, in the case of the amplifier, we investigated and analyzed the output energy of the amplifier as a function of the time difference between the two pump beams of the oscillator and the amplifier, the pumping energy of the oscillator, and the pumping energy of the amplifier When pump energies of both the oscillator and the amplifier were 18 mJ/pulse, we could find that the output energy of the amplifier increased linearly and gradually up to the time difference of 35 ns. Finally, we determined that the slope efficiencies of the oscillator and the amplifier were 23.5 % and 11.6 %, respectively.

레이저 분광용 고출력 파장가변 레이저로 이용할 Nd:YAG 레이저의 제 2조화파로 종여기한 평행평면형 공진기 구조의 펄스형 Ti:sapphire 레이저 발진기와 이를 이용한 단일경로 형태의 Ti:sapphire 레이저 증폭기의 출력특성을 조사하였다. 발진기의 경우에는 여기광의 에너지, 공진기 길이, 출력거울의 반사율을 변화시키면서 출력스펙트럼, 펄스 발생시간, 펄스폭, 출력에너지를 측정하였다. 그리고 증폭기의 경우, 발진기의 레이저 광과 증폭기 여기광이 증폭매질에 들어오는 시간차이, 그리고 발진기의 여기에너지와 증폭기의 여기에너지를 각각 변화시키면서 증폭기의 출력에너지를 측정하고 이를 분석하였다. 이 결과 발진기와 증폭기의 여기에너지가 18 mJ/pulse일 때 두 여기광의 시간차가 35 ns까지는 지속적으로 증폭기의 에너지가 증가했으며, 발진기의 여기광에 대한 증폭기의 기울기 효율은 23.5 %이고, 증폭기의 여기광에 대한 증폭기의 기울기 효율은 11.6 %였다.

Keywords

References

  1. P. F. Moulton, 'Spectroscopy and laser characteristics of $Ti:Al_2O_3$', J. Opt. Soc. Am. vol. B3, pp.125-132, 1986 https://doi.org/10.1364/JOSAB.3.000125
  2. C. Byvik and A. Buoncristiani, 'Analysis of vibronic Transitions in Titanium Doped Sapphire Using the Temperature of the Fluorescence Spectra', IEEE J. Quantum Electron. vol. QE-21, pp. 1619-1623, 1985 https://doi.org/10.1109/JQE.1985.1072564
  3. A. J. Alfrey, 'Modeling of Longitudinally Pumped CW Ti:Sapphire Laser Oscillators', IEEE J. Quantum Electron. vol. QE-25, pp.760-766, 1989 https://doi.org/10.1109/3.17342
  4. A. Sanchez, A. J. Strauss, R. L. Aggarwal, and R. E. Fahey, 'Crystal Growth, Spectroscopy, and Laser Characteristics of $Ti:Al_2O_3$', Quantum Electron. vol. QE-24, pp. 995-1002, 1988 https://doi.org/10.1109/3.220
  5. G. A. Rines, P. E. Moulton, 'Performance of gain-switched $Ti:Al_2O_3$ unstable - resonator lasers', Opt. Lett. vol. 15, pp. 434-436, 1990 https://doi.org/10.1364/OL.15.000434
  6. M. G. Littman, 'Single-mode pulsed tunable dye laser', Appl. Opt. vol. 23, pp. 4465-4468, 1984 https://doi.org/10.1364/AO.23.004465
  7. K. W. Kamgas, D. D. Lowenthal, and C. H. Muller , 'Single-longitudinal-mode, tunable, pulsed Ti:sapphire laser', Opt. Lett. vol. 14, pp. 21-23, 1989 https://doi.org/10.1364/OL.14.000021
  8. M. R. H. Knowles and C. E. Webb, 'Cavity configurations for copper vapour laser pumped titanium sapphire lasers', Opt. Comm. vol. 89, pp. 493-506, 1992 https://doi.org/10.1016/0030-4018(92)90563-7
  9. N. J. Vasa, M. Tanaka, T. Okada, M. Maeda and O. Uchino, 'Comparative study of spectral narrowing of a pulsed Ti:Sapphire laser using pulsed and CW injection seeding', Appl. Opt. vol. 62, pp. 51-57, 1996 https://doi.org/10.1038/062051a0
  10. D. E. Spence, P. N. Kean, and W. Sibbett, '60-fsec pulse generation from a self-mode-locked Ti:sapphire laser', Opt. Lett. vol. 16, pp. 42-44, 1991 https://doi.org/10.1364/OL.16.000042
  11. G. Cerullo, S. Desilvestri, and V. Magni, 'Self-starting Kerr-lens mode locking of a Ti:sapphire laser', Opt. Lett. vol. 19, pp. 1040-1042, 1994 https://doi.org/10.1364/OL.19.001040
  12. Y. M. Liu, and P. R. Prucnal, 'Slow Amplitude Modulation in the Pulse Train of a Self-Mode-Locked Ti:Sapphire Laser', IEEE J. Quantum Electron. vol. QE-29, pp. 2663-2669, 1993 https://doi.org/10.1109/3.250389
  13. J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, and D. Peressini, 'Improved Ti:Sapphire Laser Performance with New High Fiqure of Merit Crystals', IEEE E. Quantum Electron. vol. QE-30, pp. 2612-2616, 1994 https://doi.org/10.1109/3.333715
  14. A. B. Budgor, L. Esterowitz, and L. G. Deshazer, Tunable solid-state lasers (Springer-Verlag Seires Vol. 52) (Springer-Verlag, New York, 1986), pp. 202-250
  15. P. F. Moulton, 'Spectroscopy and laser characteristics of $Ti:Al_2O_3$', J. Opt. Soc. Am. vol. B3, pp. 125-132, 1986 https://doi.org/10.1364/JOSAB.3.000125
  16. D. S. McClure, 'Optical spectra of transition-metal ions in corundum', J. Chem. Phys. vol. 36, pp. 2757-2779, 1962 https://doi.org/10.1063/1.1732364
  17. K. F. Wall, R. L. Aggarwal, R. E. Fathey, and A. J. Strauss, 'Small-signal gain measurements in a $Ti:Al_2O_3$ amplifier', IEEE J. Quantum Electron. vol. QE-24, pp. 1016-1020, 1988 https://doi.org/10.1109/3.223
  18. R. L. Aggarwal, A. Sanchez, M. M. Stuppi, R. E. Fathey, A. J. Strauss, W. L. Rapoport, and C. P. Khattak, 'Residual infrared absorption in As-grown and annealed crystals of $Ti:Al_2O_3$', IEEE J. Quantum Electron. vol. QE-24, pp.1003-1008, 1998 https://doi.org/10.1109/3.221
  19. K. F. Wall, R. L. Aggarwal, M. D. Sciacca, H. J. Zeiger, R. E. Fathey, and A. J. Strauss, 'Optically induced nonresonant changes in the refractive index of $Ti:Al_2O_3$,' Opt. Lett. vol. 14, pp. 180-182, 1989 https://doi.org/10.1364/OL.14.000180
  20. R. R. Joyce, P. L. Richards, 'Far-Infrared Spectra of $Al_2O_3$ Doped with Ti, V, and Cr', Phys. Rev. vol. 179, pp. 375-380, 1969 https://doi.org/10.1103/PhysRev.179.375
  21. W. Koechner, Solid State Laser Engineering; 5nd Edition (Springer Verlag, New York, 1999), pp. 77-79
  22. K. Liu, and M. G. Littman, 'Novel geometry for singlemode scanning of tunable lasers.', Opt. Lett. vol. 6, pp. 117-118, 1981 https://doi.org/10.1364/OL.6.000117
  23. I. T. Mckinnie, A. L. Oien, D. M. Warrington, P. N. Tonga, L. A. W. Gloster, and T. A. King, '$Ti^{3+}$ Ion Concentration and Ti:Sapphire Laser performance,' IEEE J. Quantum Electron, Vol. 33, No.7, pp. 1221-1230, 1997 https://doi.org/10.1109/3.594888